Tricomi's Φ-equation

We study an autonomous nonlinear differential equation that models the movement of a damped F-pendulum with constant forcing. In the dissipative case, two results are presented, on the one hand, using the application of Poincaré and energy functions, a sufficient criterion is established to guarante...

Full description

Autores:
Castro G., Diego A.
Gutiérrez G., Alexander
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/13189
Acceso en línea:
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4903
http://hdl.handle.net/10784/13189
Palabra clave:
Periodic solutions
Attractors
Stability
Soluciones periódicas
Atractores
Estabilidad
Rights
License
Copyright (c) 2018 Diego A. Castro G., Alexander Gutiérrez G.
id REPOEAFIT2_671538123a3fa63e4a0e01c203fc7175
oai_identifier_str oai:repository.eafit.edu.co:10784/13189
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling 2018-06-142018-11-16T16:28:59Z2018-06-142018-11-16T16:28:59Z2256-43141794-9165http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4903http://hdl.handle.net/10784/1318910.17230/ingciencia.13.27.1We study an autonomous nonlinear differential equation that models the movement of a damped F-pendulum with constant forcing. In the dissipative case, two results are presented, on the one hand, using the application of Poincaré and energy functions, a sufficient criterion is established to guarantee the existence, uniqueness and asymptotic stability of a periodic solution of the second kind and on the other hand, a criterion is presented with which the basin of attraction of an asymptotically stable equilibrium is estimated analytically with the help of the Lasalle’s invariance principle. While in the conservative case there are necessary conditions for range of the period function to be defined in an unbounded interval. The results obtained in the dissipative case are a generalization of those established by Tricomi in the newtonian case.Se estudia una ecuación diferencial no lineal autónoma que modela el movimiento de un Φ-péndulo amortiguado con forzamiento constante. En el caso disipativo se presentan dos resultados, por un lado, usando la aplicación de Poincaré y funciones de energía, se establece un criterio suficiente para determinar la existencia, unicidad y estabilidad asintótica de una solución periódica de segunda clase y por otro lado, se presenta un criterio con el que se estima analíticamente la cuenca de atracción de un equilibrio asintóticamente estable con ayuda del principio de invarianza de Lasalle. Mientras que en el caso conservativo se dan condiciones necesarias para que la imagen de la función periodo esté definida en un intervalo no acotado. Los resultados obtenidos en el caso disipativo son una generalización de los establecidos por Tricomi en el caso newtoniano.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4903Copyright (c) 2018 Diego A. Castro G., Alexander Gutiérrez G.Attribution 4.0 International (CC BY 4.0)http://creativecommons.org/licenses/by/4.0Acceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 14 No 27 (2018); 11-28Ingeniería y Ciencia; Vol 14 No 27 (2018); 11-28Tricomi's Φ-equationΦ-ecuación de Tricomiinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionarticlepublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Periodic solutionsAttractorsStabilitySoluciones periódicasAtractoresEstabilidadCastro G., Diego A.Gutiérrez G., AlexanderUniversidad Tecnológica de PereiraIngeniería y Ciencia14271128ing.ciencTHUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/9cd67b8e-82b0-437d-8e3f-b06f785bdbb3/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINALdocument (4).pdfdocument (4).pdfTexto completo PDFapplication/pdf567257https://repository.eafit.edu.co/bitstreams/781b8bde-4c52-4364-a9b8-1ec039dbd1c7/download05ab42db00885e3d318e30e21f924f56MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/66b34684-a58b-412e-822b-ea1396ede03a/downloadd3b00fce8feb26e4cc14cb0134f935b9MD5310784/13189oai:repository.eafit.edu.co:10784/131892020-03-01 12:44:55.607http://creativecommons.org/licenses/by/4.0Copyright (c) 2018 Diego A. Castro G., Alexander Gutiérrez G.open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Tricomi's Φ-equation
dc.title.spa.fl_str_mv Φ-ecuación de Tricomi
title Tricomi's Φ-equation
spellingShingle Tricomi's Φ-equation
Periodic solutions
Attractors
Stability
Soluciones periódicas
Atractores
Estabilidad
title_short Tricomi's Φ-equation
title_full Tricomi's Φ-equation
title_fullStr Tricomi's Φ-equation
title_full_unstemmed Tricomi's Φ-equation
title_sort Tricomi's Φ-equation
dc.creator.fl_str_mv Castro G., Diego A.
Gutiérrez G., Alexander
dc.contributor.author.none.fl_str_mv Castro G., Diego A.
Gutiérrez G., Alexander
dc.contributor.affiliation.spa.fl_str_mv Universidad Tecnológica de Pereira
dc.subject.keyword.eng.fl_str_mv Periodic solutions
Attractors
Stability
topic Periodic solutions
Attractors
Stability
Soluciones periódicas
Atractores
Estabilidad
dc.subject.keyword.spa.fl_str_mv Soluciones periódicas
Atractores
Estabilidad
description We study an autonomous nonlinear differential equation that models the movement of a damped F-pendulum with constant forcing. In the dissipative case, two results are presented, on the one hand, using the application of Poincaré and energy functions, a sufficient criterion is established to guarantee the existence, uniqueness and asymptotic stability of a periodic solution of the second kind and on the other hand, a criterion is presented with which the basin of attraction of an asymptotically stable equilibrium is estimated analytically with the help of the Lasalle’s invariance principle. While in the conservative case there are necessary conditions for range of the period function to be defined in an unbounded interval. The results obtained in the dissipative case are a generalization of those established by Tricomi in the newtonian case.
publishDate 2018
dc.date.available.none.fl_str_mv 2018-11-16T16:28:59Z
dc.date.issued.none.fl_str_mv 2018-06-14
dc.date.accessioned.none.fl_str_mv 2018-11-16T16:28:59Z
dc.date.none.fl_str_mv 2018-06-14
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
article
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4903
http://hdl.handle.net/10784/13189
dc.identifier.doi.none.fl_str_mv 10.17230/ingciencia.13.27.1
identifier_str_mv 2256-4314
1794-9165
10.17230/ingciencia.13.27.1
url http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4903
http://hdl.handle.net/10784/13189
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4903
dc.rights.eng.fl_str_mv Copyright (c) 2018 Diego A. Castro G., Alexander Gutiérrez G.
Attribution 4.0 International (CC BY 4.0)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2018 Diego A. Castro G., Alexander Gutiérrez G.
Attribution 4.0 International (CC BY 4.0)
http://creativecommons.org/licenses/by/4.0
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.eng.fl_str_mv Ingeniería y Ciencia; Vol 14 No 27 (2018); 11-28
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 14 No 27 (2018); 11-28
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/9cd67b8e-82b0-437d-8e3f-b06f785bdbb3/download
https://repository.eafit.edu.co/bitstreams/781b8bde-4c52-4364-a9b8-1ec039dbd1c7/download
https://repository.eafit.edu.co/bitstreams/66b34684-a58b-412e-822b-ea1396ede03a/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
05ab42db00885e3d318e30e21f924f56
d3b00fce8feb26e4cc14cb0134f935b9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110631755776000