Extending Marching Cubes with Adaptative Methods to obtain more accurate iso-surfaces

This work proposes an extension of the Marching Cubes algorithm, where the goal is to represent implicit functions with higher accuracy using the same grid size -- The proposed algorithm displaces the vertices of the cubes iteratively until the stop condition is achieved -- After each iteration, the...

Full description

Autores:
Congote, John
Moreno, Aitor
Barandiaran, Iñigo
Barandiaran, Javier
Ruíz, Oscar
Tipo de recurso:
Fecha de publicación:
2010
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/9794
Acceso en línea:
http://hdl.handle.net/10784/9794
Palabra clave:
MÉTODOS ITERATIVOS (MATEMÁTICAS)
FUNCIONES VECTORIALES
GRÁFICOS POR COMPUTADOR
FUNCIONES ALGEBRAICAS
RESONANCIA
Iterative methods (mathematics)
Computer graphics
Algebraic functions
Resonance
Nube de puntos
Iso-superficie
Funciones escalares
Teoría de Discretización
Medida de Hausdorff
Rights
License
Acceso cerrado
Description
Summary:This work proposes an extension of the Marching Cubes algorithm, where the goal is to represent implicit functions with higher accuracy using the same grid size -- The proposed algorithm displaces the vertices of the cubes iteratively until the stop condition is achieved -- After each iteration, the difference between the implicit and the explicit representations is reduced, and when the algorithm finishes, the implicit surface representation using the modified cubical grid is more accurate, as the results shall confirm -- The proposed algorithm corrects some topological problems that may appear in the discretization process using the original grid