Colombian Energy Market: Optimal Portfolio
This paper focuses on the study of an optimal portfolio in the Colombian Energy Market using the Artificial Intelligence techniques specifically, Fuzzy Modeling and Neural Networks. The methodology at first, is implemented using the Matlab Fuzzy Logic Toolbox and with the help of a script the proces...
- Autores:
-
Palacios, Alejandro
Giraldo, Marcela
Quintero, O. L.
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/4610
- Acceso en línea:
- http://hdl.handle.net/10784/4610
- Palabra clave:
- Energy Markets
Artificial Intelligence
Fuzzy Modeling
Neural Networks
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_61003406cd1b8cdb2c285ce4a230d4b6 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/4610 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
2014-12-12T15:41:27Z20142014-12-12T15:41:27Zhttp://hdl.handle.net/10784/4610This paper focuses on the study of an optimal portfolio in the Colombian Energy Market using the Artificial Intelligence techniques specifically, Fuzzy Modeling and Neural Networks. The methodology at first, is implemented using the Matlab Fuzzy Logic Toolbox and with the help of a script the process is automatized. Secondly, a Neural Network is implemented in Matlab and its results are compared with the ones obtained in the Matlab Neural Network Toolbox. The results of the Fuzzy model and the Neural Network are presented and conclusions of both techniques are discussed. Finally possible future work are proposed.engUniversidad EAFITGrupo de Investigación Modelado MatemáticoEscuela de CienciasColombian Energy Market: Optimal Portfolioinfo:eu-repo/semantics/workingPaperworkingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Energy MarketsArtificial IntelligenceFuzzy ModelingNeural NetworksUniversidad EAFIT. Escuela de Ciencias. Grupo de Investigación Modelado MatemáticoPalacios, AlejandroGiraldo, MarcelaQuintero, O. L.ORIGINAL27 ColombianEnergyMarketOptimalPortfolio.pdf27 ColombianEnergyMarketOptimalPortfolio.pdfapplication/pdf695075https://repository.eafit.edu.co/bitstreams/4511ae6c-aac0-40af-bc70-69d85a9fe87c/download7f2555b83bb27d87987e7f1705203993MD5110784/4610oai:repository.eafit.edu.co:10784/46102014-12-12 13:48:08.332open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Colombian Energy Market: Optimal Portfolio |
title |
Colombian Energy Market: Optimal Portfolio |
spellingShingle |
Colombian Energy Market: Optimal Portfolio Energy Markets Artificial Intelligence Fuzzy Modeling Neural Networks |
title_short |
Colombian Energy Market: Optimal Portfolio |
title_full |
Colombian Energy Market: Optimal Portfolio |
title_fullStr |
Colombian Energy Market: Optimal Portfolio |
title_full_unstemmed |
Colombian Energy Market: Optimal Portfolio |
title_sort |
Colombian Energy Market: Optimal Portfolio |
dc.creator.fl_str_mv |
Palacios, Alejandro Giraldo, Marcela Quintero, O. L. |
dc.contributor.department.spa.fl_str_mv |
Universidad EAFIT. Escuela de Ciencias. Grupo de Investigación Modelado Matemático |
dc.contributor.author.spa.fl_str_mv |
Palacios, Alejandro Giraldo, Marcela Quintero, O. L. |
dc.subject.keyword.eng.fl_str_mv |
Energy Markets Artificial Intelligence Fuzzy Modeling Neural Networks |
topic |
Energy Markets Artificial Intelligence Fuzzy Modeling Neural Networks |
description |
This paper focuses on the study of an optimal portfolio in the Colombian Energy Market using the Artificial Intelligence techniques specifically, Fuzzy Modeling and Neural Networks. The methodology at first, is implemented using the Matlab Fuzzy Logic Toolbox and with the help of a script the process is automatized. Secondly, a Neural Network is implemented in Matlab and its results are compared with the ones obtained in the Matlab Neural Network Toolbox. The results of the Fuzzy model and the Neural Network are presented and conclusions of both techniques are discussed. Finally possible future work are proposed. |
publishDate |
2014 |
dc.date.available.none.fl_str_mv |
2014-12-12T15:41:27Z |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2014-12-12T15:41:27Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.eng.fl_str_mv |
workingPaper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.local.spa.fl_str_mv |
Documento de trabajo de investigación |
dc.type.hasVersion.eng.fl_str_mv |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/4610 |
url |
http://hdl.handle.net/10784/4610 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.program.spa.fl_str_mv |
Grupo de Investigación Modelado Matemático |
dc.publisher.department.spa.fl_str_mv |
Escuela de Ciencias |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/4511ae6c-aac0-40af-bc70-69d85a9fe87c/download |
bitstream.checksum.fl_str_mv |
7f2555b83bb27d87987e7f1705203993 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110400323518464 |