Forecasting of time series with trend and seasonal cycle using the airline model and artificial neural networks
Many time series with trend and seasonal cycles are successfully modeled and predicted using the airline model of Box and Jenkins; However, the presence of nonlinearities in the data is neglected by this model. In this article, a new non-linear version of the airline model is proposed; for this, the...
- Autores:
-
Velásquez, J D
Franco, C J
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14444
- Acceso en línea:
- http://hdl.handle.net/10784/14444
- Palabra clave:
- Prediction
Nonlinear Models
Sarima
Multilayer Perceptron
Predicción
Modelos No Lineales
Sarima
Perceptrón Multicapa
- Rights
- License
- Copyright (c) 2012 J D Velásquez, C J Franco
id |
REPOEAFIT2_605a57e46fceffa145c9b350786a64a7 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/14444 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2012-06-152019-11-22T18:48:59Z2012-06-152019-11-22T18:48:59Z2256-43141794-9165http://hdl.handle.net/10784/1444410.17230/ingciencia.8.15.9Many time series with trend and seasonal cycles are successfully modeled and predicted using the airline model of Box and Jenkins; However, the presence of nonlinearities in the data is neglected by this model. In this article, a new non-linear version of the airline model is proposed; for this, the linear component of moving averages is replaced by a multilayer perceptron. The proposed model is used to forecast two benchmark time series; It was found that the proposed model is capable of forecasting time series more accurately than other traditional approaches.Muchas series de tiempo con tendencia y ciclos estacionales son exitosamente modeladas y pronosticadas usando el modelo airline de Box y Jenkins; sin embargo, la presencia de no linealidades en los datos son despreciadas por este modelo. En este artículo, se propone una nueva versión no lineal del modelo airline; para esto, se reemplaza la componente lineal de promedios móviles por un perceptrón multicapa. El modelo propuesto es usado para pronosticar dos series de tiempo benchmark; se encontró que el modelo propuesto es capaz de pronosticar las series de tiempo con mayor precisión que otras aproximaciones tradicionales.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/943http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/943Copyright (c) 2012 J D Velásquez, C J FrancoAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 8, No 15 (2012)Forecasting of time series with trend and seasonal cycle using the airline model and artificial neural networksPronóstico de series de tiempo con tendencia y ciclo estacional usando el modelo airline y redes neuronales artificialesarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1PredictionNonlinear ModelsSarimaMultilayer PerceptronPredicciónModelos No LinealesSarimaPerceptrón MulticapaVelásquez, J D4bebabc0-254d-4f2d-bac8-3aa4648a9cc3-1Franco, C Jee8d02a9-9241-426a-a9f2-ee423b8e09f1-1Universidad Nacional de ColombiaIngeniería y Ciencia815171189ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/50cc0794-2690-4031-a8cd-b7465bd49ac0/downloadda9b21a5c7e00c7f1127cef8e97035e0MD52ORIGINAL9.pdf9.pdfTexto completo PDFapplication/pdf291962https://repository.eafit.edu.co/bitstreams/b7b7ca40-a4b1-4eef-8c5f-1139c5e0862d/downloadc0f4fa19e78293098cfbaf02f34195b3MD51articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/d2cd02f6-3a63-4222-8445-8e9f388e9de6/download5bd220ee9f54e7acbe7a0cb7a283f2ecMD5310784/14444oai:repository.eafit.edu.co:10784/144442024-12-04 11:48:53.834open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Forecasting of time series with trend and seasonal cycle using the airline model and artificial neural networks |
dc.title.spa.fl_str_mv |
Pronóstico de series de tiempo con tendencia y ciclo estacional usando el modelo airline y redes neuronales artificiales |
title |
Forecasting of time series with trend and seasonal cycle using the airline model and artificial neural networks |
spellingShingle |
Forecasting of time series with trend and seasonal cycle using the airline model and artificial neural networks Prediction Nonlinear Models Sarima Multilayer Perceptron Predicción Modelos No Lineales Sarima Perceptrón Multicapa |
title_short |
Forecasting of time series with trend and seasonal cycle using the airline model and artificial neural networks |
title_full |
Forecasting of time series with trend and seasonal cycle using the airline model and artificial neural networks |
title_fullStr |
Forecasting of time series with trend and seasonal cycle using the airline model and artificial neural networks |
title_full_unstemmed |
Forecasting of time series with trend and seasonal cycle using the airline model and artificial neural networks |
title_sort |
Forecasting of time series with trend and seasonal cycle using the airline model and artificial neural networks |
dc.creator.fl_str_mv |
Velásquez, J D Franco, C J |
dc.contributor.author.spa.fl_str_mv |
Velásquez, J D Franco, C J |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.subject.keyword.eng.fl_str_mv |
Prediction Nonlinear Models Sarima Multilayer Perceptron |
topic |
Prediction Nonlinear Models Sarima Multilayer Perceptron Predicción Modelos No Lineales Sarima Perceptrón Multicapa |
dc.subject.keyword.spa.fl_str_mv |
Predicción Modelos No Lineales Sarima Perceptrón Multicapa |
description |
Many time series with trend and seasonal cycles are successfully modeled and predicted using the airline model of Box and Jenkins; However, the presence of nonlinearities in the data is neglected by this model. In this article, a new non-linear version of the airline model is proposed; for this, the linear component of moving averages is replaced by a multilayer perceptron. The proposed model is used to forecast two benchmark time series; It was found that the proposed model is capable of forecasting time series more accurately than other traditional approaches. |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012-06-15 |
dc.date.available.none.fl_str_mv |
2019-11-22T18:48:59Z |
dc.date.accessioned.none.fl_str_mv |
2019-11-22T18:48:59Z |
dc.date.none.fl_str_mv |
2012-06-15 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/14444 |
dc.identifier.doi.none.fl_str_mv |
10.17230/ingciencia.8.15.9 |
identifier_str_mv |
2256-4314 1794-9165 10.17230/ingciencia.8.15.9 |
url |
http://hdl.handle.net/10784/14444 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/943 |
dc.relation.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/943 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2012 J D Velásquez, C J Franco |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright (c) 2012 J D Velásquez, C J Franco Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia; Vol 8, No 15 (2012) |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/50cc0794-2690-4031-a8cd-b7465bd49ac0/download https://repository.eafit.edu.co/bitstreams/b7b7ca40-a4b1-4eef-8c5f-1139c5e0862d/download https://repository.eafit.edu.co/bitstreams/d2cd02f6-3a63-4222-8445-8e9f388e9de6/download |
bitstream.checksum.fl_str_mv |
da9b21a5c7e00c7f1127cef8e97035e0 c0f4fa19e78293098cfbaf02f34195b3 5bd220ee9f54e7acbe7a0cb7a283f2ec |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102411184570368 |