Which team will win the 2014 FIFA World Cup? A Bayesian approach for dummies

This paper presents several "ex ante" simulation exercises of the 2014 FIFA World Cup. Specifically, we estimate the probabilities of each national team advancing to different stages, using a basic Bayesian approach based on conjugate families. In particular, we use the Categorical-Dirichl...

Full description

Autores:
Ramírez Hassan, Andrés
Cardona Jiménez, Johnatan
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/1315
Acceso en línea:
http://hdl.handle.net/10784/1315
Palabra clave:
Bayesian Approach
Conjugate Families
Simulation
World Cup
Rights
License
Acceso abierto
id REPOEAFIT2_5e0fa8114ccdfdbd9606c8edd0580d8d
oai_identifier_str oai:repository.eafit.edu.co:10784/1315
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Which team will win the 2014 FIFA World Cup? A Bayesian approach for dummies
title Which team will win the 2014 FIFA World Cup? A Bayesian approach for dummies
spellingShingle Which team will win the 2014 FIFA World Cup? A Bayesian approach for dummies
Bayesian Approach
Conjugate Families
Simulation
World Cup
title_short Which team will win the 2014 FIFA World Cup? A Bayesian approach for dummies
title_full Which team will win the 2014 FIFA World Cup? A Bayesian approach for dummies
title_fullStr Which team will win the 2014 FIFA World Cup? A Bayesian approach for dummies
title_full_unstemmed Which team will win the 2014 FIFA World Cup? A Bayesian approach for dummies
title_sort Which team will win the 2014 FIFA World Cup? A Bayesian approach for dummies
dc.creator.fl_str_mv Ramírez Hassan, Andrés
Cardona Jiménez, Johnatan
dc.contributor.author.none.fl_str_mv Ramírez Hassan, Andrés
Cardona Jiménez, Johnatan
dc.subject.keyword.eng.fl_str_mv Bayesian Approach
Conjugate Families
Simulation
World Cup
topic Bayesian Approach
Conjugate Families
Simulation
World Cup
description This paper presents several "ex ante" simulation exercises of the 2014 FIFA World Cup. Specifically, we estimate the probabilities of each national team advancing to different stages, using a basic Bayesian approach based on conjugate families. In particular, we use the Categorical-Dirichlet model in the first round and the Bernoulli-Beta model in the following stages. The novelty of our framework is given by the use of betting odds to elicit the hyperparameters of prior distributions. Additionally, we obtain the posterior distributions with the Highest Density Intervals of the probability to being champion for each team. We find that Brazil (19.95%), Germany (14.68%), Argentina (12.05%), and Spain (6.2%) have the highest probabilities of being champion. Finally, we identify some betting opportunities with our simulation exercises. In particular, Bosnia & Herzegovina is a promising, whereas Australia shows the lowest betting opportunities return.
publishDate 2014
dc.date.available.none.fl_str_mv 2014-02-24T21:14:39Z
dc.date.issued.none.fl_str_mv 2014-02-14
dc.date.accessioned.none.fl_str_mv 2014-02-24T21:14:39Z
dc.type.eng.fl_str_mv workingPaper
info:eu-repo/semantics/workingPaper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.local.spa.fl_str_mv Documento de trabajo de investigación
dc.type.hasVersion.eng.fl_str_mv draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/1315
dc.identifier.jel.none.fl_str_mv C11
C15
C53
url http://hdl.handle.net/10784/1315
identifier_str_mv C11
C15
C53
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.department.spa.fl_str_mv Escuela de Economía y Finanzas
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/4dc871cb-27af-4428-ade8-45350b9bd5fd/download
https://repository.eafit.edu.co/bitstreams/022d3341-f360-4082-adc2-131b101b03c7/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
e9eb6ce78f56dc051e85013948515194
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110143774720000
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2014-02-24T21:14:39Z2014-02-142014-02-24T21:14:39Zhttp://hdl.handle.net/10784/1315C11C15C53This paper presents several "ex ante" simulation exercises of the 2014 FIFA World Cup. Specifically, we estimate the probabilities of each national team advancing to different stages, using a basic Bayesian approach based on conjugate families. In particular, we use the Categorical-Dirichlet model in the first round and the Bernoulli-Beta model in the following stages. The novelty of our framework is given by the use of betting odds to elicit the hyperparameters of prior distributions. Additionally, we obtain the posterior distributions with the Highest Density Intervals of the probability to being champion for each team. We find that Brazil (19.95%), Germany (14.68%), Argentina (12.05%), and Spain (6.2%) have the highest probabilities of being champion. Finally, we identify some betting opportunities with our simulation exercises. In particular, Bosnia & Herzegovina is a promising, whereas Australia shows the lowest betting opportunities return.engUniversidad EAFITEscuela de Economía y FinanzasWhich team will win the 2014 FIFA World Cup? A Bayesian approach for dummiesworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Bayesian ApproachConjugate FamiliesSimulationWorld CupRamírez Hassan, AndrésCardona Jiménez, Johnatanaramir21@eafit.edu.cojcardonj@dme.urj.brLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.eafit.edu.co/bitstreams/4dc871cb-27af-4428-ade8-45350b9bd5fd/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2014_03_Andres_Ramirez_Hassan.pdf2014_03_Andres_Ramirez_Hassan.pdfDocumento de trabajo de investigaciónapplication/pdf1478818https://repository.eafit.edu.co/bitstreams/022d3341-f360-4082-adc2-131b101b03c7/downloade9eb6ce78f56dc051e85013948515194MD5310784/1315oai:repository.eafit.edu.co:10784/13152024-03-05 14:06:01.131open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=