Implementation of the Moving Particle Semi-implicit method to predict the drag resistance coefficient on 2D

A dam break problem and the flow around a 2D submerged body on different scenarios were solved with the original Moving Particle Semi-implicit (MPS) method proposed by Koshizuka and Oka in 1996 -- The results of this study showed that although the original method reproduces the free surface of the f...

Full description

Autores:
Pérez Gutiérrez, Carlos Andrés
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/11271
Acceso en línea:
http://hdl.handle.net/10784/11271
Palabra clave:
Descomposición Helmholtz
Método semi-implícito de partículas en movimiento
HIDRODINÁMICA
DINÁMICA DE FLUIDOS
MÉTODO DE ELEMENTOS FINITOS
ECUACIONES DE NAVIER - STOKES
PROCESOS DE POISSON
PROGRAMACIÓN PARALELA
MÉTODOS DE SIMULACIÓN
PARTÍCULAS
Hydrodynamics
Fluid dynamics
Finite element method
Navier-stokes equations
Poisson processes
Parallel programming (computer science)
Simulation methods
Particles
Rights
License
Acceso abierto
id REPOEAFIT2_4ec6e8d9d967f9cd27251cf7f464835d
oai_identifier_str oai:repository.eafit.edu.co:10784/11271
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.spa.fl_str_mv Implementation of the Moving Particle Semi-implicit method to predict the drag resistance coefficient on 2D
title Implementation of the Moving Particle Semi-implicit method to predict the drag resistance coefficient on 2D
spellingShingle Implementation of the Moving Particle Semi-implicit method to predict the drag resistance coefficient on 2D
Descomposición Helmholtz
Método semi-implícito de partículas en movimiento
HIDRODINÁMICA
DINÁMICA DE FLUIDOS
MÉTODO DE ELEMENTOS FINITOS
ECUACIONES DE NAVIER - STOKES
PROCESOS DE POISSON
PROGRAMACIÓN PARALELA
MÉTODOS DE SIMULACIÓN
PARTÍCULAS
Hydrodynamics
Fluid dynamics
Finite element method
Navier-stokes equations
Poisson processes
Parallel programming (computer science)
Simulation methods
Particles
title_short Implementation of the Moving Particle Semi-implicit method to predict the drag resistance coefficient on 2D
title_full Implementation of the Moving Particle Semi-implicit method to predict the drag resistance coefficient on 2D
title_fullStr Implementation of the Moving Particle Semi-implicit method to predict the drag resistance coefficient on 2D
title_full_unstemmed Implementation of the Moving Particle Semi-implicit method to predict the drag resistance coefficient on 2D
title_sort Implementation of the Moving Particle Semi-implicit method to predict the drag resistance coefficient on 2D
dc.creator.fl_str_mv Pérez Gutiérrez, Carlos Andrés
dc.contributor.advisor.none.fl_str_mv García Ruíz, Manuel Julio
dc.contributor.author.none.fl_str_mv Pérez Gutiérrez, Carlos Andrés
dc.subject.spa.fl_str_mv Descomposición Helmholtz
Método semi-implícito de partículas en movimiento
topic Descomposición Helmholtz
Método semi-implícito de partículas en movimiento
HIDRODINÁMICA
DINÁMICA DE FLUIDOS
MÉTODO DE ELEMENTOS FINITOS
ECUACIONES DE NAVIER - STOKES
PROCESOS DE POISSON
PROGRAMACIÓN PARALELA
MÉTODOS DE SIMULACIÓN
PARTÍCULAS
Hydrodynamics
Fluid dynamics
Finite element method
Navier-stokes equations
Poisson processes
Parallel programming (computer science)
Simulation methods
Particles
dc.subject.lemb.spa.fl_str_mv HIDRODINÁMICA
DINÁMICA DE FLUIDOS
MÉTODO DE ELEMENTOS FINITOS
ECUACIONES DE NAVIER - STOKES
PROCESOS DE POISSON
PROGRAMACIÓN PARALELA
MÉTODOS DE SIMULACIÓN
PARTÍCULAS
dc.subject.keyword.spa.fl_str_mv Hydrodynamics
Fluid dynamics
Finite element method
Navier-stokes equations
Poisson processes
Parallel programming (computer science)
Simulation methods
Particles
description A dam break problem and the flow around a 2D submerged body on different scenarios were solved with the original Moving Particle Semi-implicit (MPS) method proposed by Koshizuka and Oka in 1996 -- The results of this study showed that although the original method reproduces the free surface of the fluid on the dam break computation, it can not accurately compute the pressure distribution over the submerged bodies -- It was found that the free surface was inaccurate when negative pressures were present in the particle domain -- Also, when modelling the interaction of a solid immersed in a fluid, the simulation exhibited stability issues and solid penetration -- Several modifications of the original MPS were studied, implemented and tested -- This thesis proposes a modified Moving Particle Semi-implicit (MPS)method for modelling immerse bodies in an free surface flow -- The MPS method is based on the prediction-correction calculation of the velocity field based on the Helmhotz-Hodge decomposition -- Initially the predicted velocity is calculated based on the viscous and external forces terms and then corrected by the gradient of the pressure which is obtained by the solution of the Poisson Pressure’s equation – This thesis shows how small variations in the source term of the Poisson Pressure’s equation can destabilise or stabilise simulations -- One of the main result of this research is an improved stability by means of a reformulation of the Poisson Pressure equation and the aid of relaxation factors -- Also, the pressure gradient was computed for non free surface particles only -- The results show that, although pressure fluctuations were still present, good results were obtained when compared the drag coefficient to the reported values in the literature
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.available.none.fl_str_mv 2017-03-31T19:43:59Z
dc.date.accessioned.none.fl_str_mv 2017-03-31T19:43:59Z
dc.type.eng.fl_str_mv doctoralThesis
info:eu-repo/semantics/doctoralThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.local.spa.fl_str_mv Tesis Doctoral
dc.type.hasVersion.eng.fl_str_mv acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/11271
dc.identifier.local.none.fl_str_mv 620.106CD P438I
url http://hdl.handle.net/10784/11271
identifier_str_mv 620.106CD P438I
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.program.spa.fl_str_mv Doctorado en Ingeniería
dc.publisher.department.spa.fl_str_mv Escuela de Ingeniería
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/89c26daf-e237-4bb3-8dfb-80099affed75/download
https://repository.eafit.edu.co/bitstreams/8a688c8e-3331-4899-a3f8-48ae345abef2/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
35606f91d251ae26477da04ca51f95ba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110154918985728
spelling García Ruíz, Manuel JulioPérez Gutiérrez, Carlos AndrésDoctor in Engineeringcarlosandrespgz@gmail.comMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2017-03-31T19:43:59Z20162017-03-31T19:43:59Zhttp://hdl.handle.net/10784/11271620.106CD P438IA dam break problem and the flow around a 2D submerged body on different scenarios were solved with the original Moving Particle Semi-implicit (MPS) method proposed by Koshizuka and Oka in 1996 -- The results of this study showed that although the original method reproduces the free surface of the fluid on the dam break computation, it can not accurately compute the pressure distribution over the submerged bodies -- It was found that the free surface was inaccurate when negative pressures were present in the particle domain -- Also, when modelling the interaction of a solid immersed in a fluid, the simulation exhibited stability issues and solid penetration -- Several modifications of the original MPS were studied, implemented and tested -- This thesis proposes a modified Moving Particle Semi-implicit (MPS)method for modelling immerse bodies in an free surface flow -- The MPS method is based on the prediction-correction calculation of the velocity field based on the Helmhotz-Hodge decomposition -- Initially the predicted velocity is calculated based on the viscous and external forces terms and then corrected by the gradient of the pressure which is obtained by the solution of the Poisson Pressure’s equation – This thesis shows how small variations in the source term of the Poisson Pressure’s equation can destabilise or stabilise simulations -- One of the main result of this research is an improved stability by means of a reformulation of the Poisson Pressure equation and the aid of relaxation factors -- Also, the pressure gradient was computed for non free surface particles only -- The results show that, although pressure fluctuations were still present, good results were obtained when compared the drag coefficient to the reported values in the literaturespaUniversidad EAFITDoctorado en IngenieríaEscuela de IngenieríaDescomposición HelmholtzMétodo semi-implícito de partículas en movimientoHIDRODINÁMICADINÁMICA DE FLUIDOSMÉTODO DE ELEMENTOS FINITOSECUACIONES DE NAVIER - STOKESPROCESOS DE POISSONPROGRAMACIÓN PARALELAMÉTODOS DE SIMULACIÓNPARTÍCULASHydrodynamicsFluid dynamicsFinite element methodNavier-stokes equationsPoisson processesParallel programming (computer science)Simulation methodsParticlesImplementation of the Moving Particle Semi-implicit method to predict the drag resistance coefficient on 2DdoctoralThesisinfo:eu-repo/semantics/doctoralThesisTesis DoctoralacceptedVersionhttp://purl.org/coar/resource_type/c_db06Acceso abiertohttp://purl.org/coar/access_right/c_abf2LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/89c26daf-e237-4bb3-8dfb-80099affed75/download76025f86b095439b7ac65b367055d40cMD51ORIGINALCarlosAndres_PerezGutierrez_2016.pdfCarlosAndres_PerezGutierrez_2016.pdfTrabajo de gradoapplication/pdf8121899https://repository.eafit.edu.co/bitstreams/8a688c8e-3331-4899-a3f8-48ae345abef2/download35606f91d251ae26477da04ca51f95baMD5210784/11271oai:repository.eafit.edu.co:10784/112712020-03-25 12:14:24.441open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK