A Remark on the Heat Equation and Minimal Morse Functions on Tori and Spheres

Let (M, g) be a compact, connected riemannian manifold that is homogeneous, i.e. each pair of points p, q ∈ M have isometric neighborhoods. This paper is a first step towards an understanding of the extent to which it is true that for each "generic" initial condition ff/∂t = Δgf, f(⋅, 0) =...

Full description

Autores:
Cadavid, Carlos
Vélez Caicedo, Juan Diego
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14408
Acceso en línea:
http://hdl.handle.net/10784/14408
Palabra clave:
Morse Function
Heat Equation
Función Morse
Ecuación De Calor
Rights
License
Copyright (c) 2013 Carlos Cadavid, Juan Diego Vélez Caicedo
id REPOEAFIT2_4ea45e2dc5bb50674eeb982bf6d600ab
oai_identifier_str oai:repository.eafit.edu.co:10784/14408
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2013-03-222019-11-22T17:02:38Z2013-03-222019-11-22T17:02:38Z2256-43141794-9165http://hdl.handle.net/10784/1440810.17230/ingciecia.9.17.1Let (M, g) be a compact, connected riemannian manifold that is homogeneous, i.e. each pair of points p, q ∈ M have isometric neighborhoods. This paper is a first step towards an understanding of the extent to which it is true that for each "generic" initial condition ff/∂t = Δgf, f(⋅, 0) = f0 is such that for sufficiently large t, f(⋅ t) is a minimal Morse function, i.e., a Morse function whose total number of critical points is the minimal possible on M. In this paper we show that this is true for flat tori and round spheres in all dimensions.Sea (M, g) una variedad riemanniana compacta y conectada que es homogénea, es decir, cada par de puntos p, q ∈ M tiene vecindades isométricas. Este documento es un primer paso hacia una comprensión de la medida en que es cierto que para cada condición inicial "genérica" ff / ∂t = Δgf, f (⋅, 0) = f0 es tal que para t suficientemente grande, f ( ⋅ t) es una función Morse mínima, es decir, una función Morse cuyo número total de puntos críticos es el mínimo posible en M. En este artículo mostramos que esto es cierto para toros planos y esferas redondas en todas las dimensiones.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1839http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1839Copyright (c) 2013 Carlos Cadavid, Juan Diego Vélez CaicedoAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 9, No 17 (2013)A Remark on the Heat Equation and Minimal Morse Functions on Tori and SpheresUna nota acerca de la ecuación del calor y funciones de Morse minimales en toros y esferasarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Morse FunctionHeat EquationFunción MorseEcuación De CalorCadavid, Carlos738f394c-0933-4d83-982c-62e076584103-1Vélez Caicedo, Juan Diego84f3b6cb-3d98-4f68-a998-de4025bfc80b-1Universidad EAFITUniversidad Nacional de ColombiaIngeniería y Ciencia9171120ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/5286fbce-16d3-4dd5-9aa4-9cbb6afb64e1/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL1.pdf1.pdfTexto completo PDFapplication/pdf475234https://repository.eafit.edu.co/bitstreams/4749131d-616e-48e2-86ae-1b8a9cebb31f/downloadecf6082498932a89f3c92a04e050e5ebMD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/942e6aec-faf5-42f9-91df-2b9d8c55c7f4/download8fd186238aacdfbd9b0a5fec35c8f24fMD5310784/14408oai:repository.eafit.edu.co:10784/144082024-12-04 11:48:02.413open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv A Remark on the Heat Equation and Minimal Morse Functions on Tori and Spheres
dc.title.spa.fl_str_mv Una nota acerca de la ecuación del calor y funciones de Morse minimales en toros y esferas
title A Remark on the Heat Equation and Minimal Morse Functions on Tori and Spheres
spellingShingle A Remark on the Heat Equation and Minimal Morse Functions on Tori and Spheres
Morse Function
Heat Equation
Función Morse
Ecuación De Calor
title_short A Remark on the Heat Equation and Minimal Morse Functions on Tori and Spheres
title_full A Remark on the Heat Equation and Minimal Morse Functions on Tori and Spheres
title_fullStr A Remark on the Heat Equation and Minimal Morse Functions on Tori and Spheres
title_full_unstemmed A Remark on the Heat Equation and Minimal Morse Functions on Tori and Spheres
title_sort A Remark on the Heat Equation and Minimal Morse Functions on Tori and Spheres
dc.creator.fl_str_mv Cadavid, Carlos
Vélez Caicedo, Juan Diego
dc.contributor.author.spa.fl_str_mv Cadavid, Carlos
Vélez Caicedo, Juan Diego
dc.contributor.affiliation.spa.fl_str_mv Universidad EAFIT
Universidad Nacional de Colombia
dc.subject.keyword.eng.fl_str_mv Morse Function
Heat Equation
topic Morse Function
Heat Equation
Función Morse
Ecuación De Calor
dc.subject.keyword.spa.fl_str_mv Función Morse
Ecuación De Calor
description Let (M, g) be a compact, connected riemannian manifold that is homogeneous, i.e. each pair of points p, q ∈ M have isometric neighborhoods. This paper is a first step towards an understanding of the extent to which it is true that for each "generic" initial condition ff/∂t = Δgf, f(⋅, 0) = f0 is such that for sufficiently large t, f(⋅ t) is a minimal Morse function, i.e., a Morse function whose total number of critical points is the minimal possible on M. In this paper we show that this is true for flat tori and round spheres in all dimensions.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-03-22
dc.date.available.none.fl_str_mv 2019-11-22T17:02:38Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T17:02:38Z
dc.date.none.fl_str_mv 2013-03-22
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14408
dc.identifier.doi.none.fl_str_mv 10.17230/ingciecia.9.17.1
identifier_str_mv 2256-4314
1794-9165
10.17230/ingciecia.9.17.1
url http://hdl.handle.net/10784/14408
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1839
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1839
dc.rights.eng.fl_str_mv Copyright (c) 2013 Carlos Cadavid, Juan Diego Vélez Caicedo
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2013 Carlos Cadavid, Juan Diego Vélez Caicedo
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 9, No 17 (2013)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/5286fbce-16d3-4dd5-9aa4-9cbb6afb64e1/download
https://repository.eafit.edu.co/bitstreams/4749131d-616e-48e2-86ae-1b8a9cebb31f/download
https://repository.eafit.edu.co/bitstreams/942e6aec-faf5-42f9-91df-2b9d8c55c7f4/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
ecf6082498932a89f3c92a04e050e5eb
8fd186238aacdfbd9b0a5fec35c8f24f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1818102395467464704