Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts
Energy purchases/sales in liberalized markets are subject to price and quantity uncertainty, which should be jointly modeled by relaxing the unreliable normality assumption for capturing risk. In this paper, we consider the spot price and energy generation to follow a bivariate semi-nonparametric di...
- Autores:
-
Trespalacios, Alfredo
Cortés, Lina
Perote, Javier
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/16325
- Acceso en línea:
- http://hdl.handle.net/10784/16325
- Palabra clave:
- Semi-nonparametric approach
multivariate distribution
electricity market
hedging
forward contracts.
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_4cc1ca5c781480ac688c9427a8c1845f |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/16325 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2020-06-09T14:53:03Z2020-06-082020-06-09T14:53:03Zhttp://hdl.handle.net/10784/16325C14C22C53L94L98Q2Energy purchases/sales in liberalized markets are subject to price and quantity uncertainty, which should be jointly modeled by relaxing the unreliable normality assumption for capturing risk. In this paper, we consider the spot price and energy generation to follow a bivariate semi-nonparametric distribution defined in terms of the Gram-Charlier expansion. This distribution allows to jointly model not only mean, variance, and correlation, but also skewness, kurtosis, and higher-order moments. Based on this model, we propose a static hedging strategy for electricity generators that participate in a competitive market where hedging is carried out through forward contracts that include a risk premium in their valuation. For this purpose, we use Monte Carlo simulation and consider information from the Colombian electricity market as the case study. The results show that the volume of energy to be sold under long-term contracts depends on each electricity generator and the risk assessment made by the market in the Forward Risk Premium. The conditions of skewness, kurtosis, and correlation, as well as the type of risk indicator to be employed, affect the hedging strategy that each electricity generator should implement.spaUniversidad EAFITEscuela de Economía y FinanzasModeling electricity price and quantity uncertainty: An application for hedging with forward contractsworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Semi-nonparametric approachmultivariate distributionelectricity markethedgingforward contracts.lcortesd@eafit.edu.coTrespalacios, AlfredoCortés, LinaPerote, JavierLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/f20ddc6b-e703-4367-9074-714547f04e72/download76025f86b095439b7ac65b367055d40cMD51ORIGINALWP-2020-17- Lina Cortes.pdfWP-2020-17- Lina Cortes.pdfapplication/pdf3903028https://repository.eafit.edu.co/bitstreams/42f5c337-3ed7-4672-8278-d973359f815f/downloadad4b42e1e45fca8860a5ca1586351da8MD5210784/16325oai:repository.eafit.edu.co:10784/163252024-03-05 14:06:13.842open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts |
title |
Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts |
spellingShingle |
Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts Semi-nonparametric approach multivariate distribution electricity market hedging forward contracts. |
title_short |
Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts |
title_full |
Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts |
title_fullStr |
Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts |
title_full_unstemmed |
Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts |
title_sort |
Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts |
dc.creator.fl_str_mv |
Trespalacios, Alfredo Cortés, Lina Perote, Javier |
dc.contributor.eafitauthor.none.fl_str_mv |
lcortesd@eafit.edu.co |
dc.contributor.author.none.fl_str_mv |
Trespalacios, Alfredo Cortés, Lina Perote, Javier |
dc.subject.keyword.spa.fl_str_mv |
Semi-nonparametric approach multivariate distribution electricity market hedging forward contracts. |
topic |
Semi-nonparametric approach multivariate distribution electricity market hedging forward contracts. |
description |
Energy purchases/sales in liberalized markets are subject to price and quantity uncertainty, which should be jointly modeled by relaxing the unreliable normality assumption for capturing risk. In this paper, we consider the spot price and energy generation to follow a bivariate semi-nonparametric distribution defined in terms of the Gram-Charlier expansion. This distribution allows to jointly model not only mean, variance, and correlation, but also skewness, kurtosis, and higher-order moments. Based on this model, we propose a static hedging strategy for electricity generators that participate in a competitive market where hedging is carried out through forward contracts that include a risk premium in their valuation. For this purpose, we use Monte Carlo simulation and consider information from the Colombian electricity market as the case study. The results show that the volume of energy to be sold under long-term contracts depends on each electricity generator and the risk assessment made by the market in the Forward Risk Premium. The conditions of skewness, kurtosis, and correlation, as well as the type of risk indicator to be employed, affect the hedging strategy that each electricity generator should implement. |
publishDate |
2020 |
dc.date.available.none.fl_str_mv |
2020-06-09T14:53:03Z |
dc.date.issued.none.fl_str_mv |
2020-06-08 |
dc.date.accessioned.none.fl_str_mv |
2020-06-09T14:53:03Z |
dc.type.eng.fl_str_mv |
workingPaper info:eu-repo/semantics/workingPaper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.local.spa.fl_str_mv |
Documento de trabajo de investigación |
dc.type.hasVersion.eng.fl_str_mv |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/16325 |
dc.identifier.jel.none.fl_str_mv |
C14 C22 C53 L94 L98 Q2 |
url |
http://hdl.handle.net/10784/16325 |
identifier_str_mv |
C14 C22 C53 L94 L98 Q2 |
dc.language.iso.eng.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.department.spa.fl_str_mv |
Escuela de Economía y Finanzas |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/f20ddc6b-e703-4367-9074-714547f04e72/download https://repository.eafit.edu.co/bitstreams/42f5c337-3ed7-4672-8278-d973359f815f/download |
bitstream.checksum.fl_str_mv |
76025f86b095439b7ac65b367055d40c ad4b42e1e45fca8860a5ca1586351da8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110250317381632 |