Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts

Energy purchases/sales in liberalized markets are subject to price and quantity uncertainty, which should be jointly modeled by relaxing the unreliable normality assumption for capturing risk. In this paper, we consider the spot price and energy generation to follow a bivariate semi-nonparametric di...

Full description

Autores:
Trespalacios, Alfredo
Cortés, Lina
Perote, Javier
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/16325
Acceso en línea:
http://hdl.handle.net/10784/16325
Palabra clave:
Semi-nonparametric approach
multivariate distribution
electricity market
hedging
forward contracts.
Rights
License
Acceso abierto
id REPOEAFIT2_4cc1ca5c781480ac688c9427a8c1845f
oai_identifier_str oai:repository.eafit.edu.co:10784/16325
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2020-06-09T14:53:03Z2020-06-082020-06-09T14:53:03Zhttp://hdl.handle.net/10784/16325C14C22C53L94L98Q2Energy purchases/sales in liberalized markets are subject to price and quantity uncertainty, which should be jointly modeled by relaxing the unreliable normality assumption for capturing risk. In this paper, we consider the spot price and energy generation to follow a bivariate semi-nonparametric distribution defined in terms of the Gram-Charlier expansion. This distribution allows to jointly model not only mean, variance, and correlation, but also skewness, kurtosis, and higher-order moments. Based on this model, we propose a static hedging strategy for electricity generators that participate in a competitive market where hedging is carried out through forward contracts that include a risk premium in their valuation. For this purpose, we use Monte Carlo simulation and consider information from the Colombian electricity market as the case study. The results show that the volume of energy to be sold under long-term contracts depends on each electricity generator and the risk assessment made by the market in the Forward Risk Premium. The conditions of skewness, kurtosis, and correlation, as well as the type of risk indicator to be employed, affect the hedging strategy that each electricity generator should implement.spaUniversidad EAFITEscuela de Economía y FinanzasModeling electricity price and quantity uncertainty: An application for hedging with forward contractsworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Semi-nonparametric approachmultivariate distributionelectricity markethedgingforward contracts.lcortesd@eafit.edu.coTrespalacios, AlfredoCortés, LinaPerote, JavierLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/f20ddc6b-e703-4367-9074-714547f04e72/download76025f86b095439b7ac65b367055d40cMD51ORIGINALWP-2020-17- Lina Cortes.pdfWP-2020-17- Lina Cortes.pdfapplication/pdf3903028https://repository.eafit.edu.co/bitstreams/42f5c337-3ed7-4672-8278-d973359f815f/downloadad4b42e1e45fca8860a5ca1586351da8MD5210784/16325oai:repository.eafit.edu.co:10784/163252024-03-05 14:06:13.842open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts
title Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts
spellingShingle Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts
Semi-nonparametric approach
multivariate distribution
electricity market
hedging
forward contracts.
title_short Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts
title_full Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts
title_fullStr Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts
title_full_unstemmed Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts
title_sort Modeling electricity price and quantity uncertainty: An application for hedging with forward contracts
dc.creator.fl_str_mv Trespalacios, Alfredo
Cortés, Lina
Perote, Javier
dc.contributor.eafitauthor.none.fl_str_mv lcortesd@eafit.edu.co
dc.contributor.author.none.fl_str_mv Trespalacios, Alfredo
Cortés, Lina
Perote, Javier
dc.subject.keyword.spa.fl_str_mv Semi-nonparametric approach
multivariate distribution
electricity market
hedging
forward contracts.
topic Semi-nonparametric approach
multivariate distribution
electricity market
hedging
forward contracts.
description Energy purchases/sales in liberalized markets are subject to price and quantity uncertainty, which should be jointly modeled by relaxing the unreliable normality assumption for capturing risk. In this paper, we consider the spot price and energy generation to follow a bivariate semi-nonparametric distribution defined in terms of the Gram-Charlier expansion. This distribution allows to jointly model not only mean, variance, and correlation, but also skewness, kurtosis, and higher-order moments. Based on this model, we propose a static hedging strategy for electricity generators that participate in a competitive market where hedging is carried out through forward contracts that include a risk premium in their valuation. For this purpose, we use Monte Carlo simulation and consider information from the Colombian electricity market as the case study. The results show that the volume of energy to be sold under long-term contracts depends on each electricity generator and the risk assessment made by the market in the Forward Risk Premium. The conditions of skewness, kurtosis, and correlation, as well as the type of risk indicator to be employed, affect the hedging strategy that each electricity generator should implement.
publishDate 2020
dc.date.available.none.fl_str_mv 2020-06-09T14:53:03Z
dc.date.issued.none.fl_str_mv 2020-06-08
dc.date.accessioned.none.fl_str_mv 2020-06-09T14:53:03Z
dc.type.eng.fl_str_mv workingPaper
info:eu-repo/semantics/workingPaper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.local.spa.fl_str_mv Documento de trabajo de investigación
dc.type.hasVersion.eng.fl_str_mv draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/16325
dc.identifier.jel.none.fl_str_mv C14
C22
C53
L94
L98
Q2
url http://hdl.handle.net/10784/16325
identifier_str_mv C14
C22
C53
L94
L98
Q2
dc.language.iso.eng.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.department.spa.fl_str_mv Escuela de Economía y Finanzas
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/f20ddc6b-e703-4367-9074-714547f04e72/download
https://repository.eafit.edu.co/bitstreams/42f5c337-3ed7-4672-8278-d973359f815f/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
ad4b42e1e45fca8860a5ca1586351da8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110250317381632