A q-exponential statistical Banach manifold
Letµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed ex...
- Autores:
-
Quiceno Echavarría, Héctor Román
Loaiza Ossa, Gabriel Ignacio
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/5245
- Acceso en línea:
- http://hdl.handle.net/10784/5245
- Palabra clave:
- TEORÍA DE LA INFORMACIÓN
ENTROPÍA (TEORÍA DE LA INFORMACIÓN)
ESPACIOS DE BANACH
FÍSICA CUÁNTICA
ANÁLISIS MATEMÁTICO
GEOMETRÍA DIFERENCIAL
FUNCIONES ANALÍTICAS
Information theory
Entropy (information theory)
Banach spaces
Quantum physical
Mathematical analysis
Geometry, differential
Analytic functions
Espacios de Orlicz
- Rights
- License
- Copyright © 2012 Elsevier Ltd. All rights reserved.
id |
REPOEAFIT2_48e77aeb23103870518899189daa96c4 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/5245 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
2015-04-24T16:18:49Z2013-022015-04-24T16:18:49ZG. Loaiza, H.R. Quiceno, A -exponential statistical Banach manifold, Journal of Mathematical Analysis and Applications, Volume 398, Issue 2, 15 February 2013, Pages 466-476, ISSN 0022-247X, http://dx.doi.org/10.1016/j.jmaa.2012.08.046. (http://www.sciencedirect.com/science/article/pii/S0022247X12006981)0022-247Xhttp://hdl.handle.net/10784/524510.1016/j.jmaa.2012.08.046Letµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed exponential), where 0 < q < 1 is any real number -- This family is characterized by the fact that when q → 1, then the non-parametric exponential models are obtained and the manifold constructed by Pistone and Sempi is recovered, up to continuous embeddings on the modeling space -- The coordinate mappings of the manifold are given in terms of Csiszár’s Φ-divergences; the tangent vectors are identified with the one-dimensional q-exponential models and q-deformations of the score functionLetµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed exponential), where 0 < q < 1 is any real number -- This family is characterized by the fact that when q → 1, then the non-parametric exponential models are obtained and the manifold constructed by Pistone and Sempi is recovered, up to continuous embeddings on the modeling space -- The coordinate mappings of the manifold are given in terms of Csiszár’s Φ-divergences; the tangent vectors are identified with the one-dimensional q-exponential models and q-deformations of the score functionengELSEVIERJournal of Mathematical Analysis and Applications Volume 398, Issue 2, 15 February 2013, Pages 466–476http://dx.doi.org/10.1016/j.jmaa.2012.08.046Copyright © 2012 Elsevier Ltd. All rights reserved.Acceso restringidohttp://purl.org/coar/access_right/c_16ecA q-exponential statistical Banach manifoldarticleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1TEORÍA DE LA INFORMACIÓNENTROPÍA (TEORÍA DE LA INFORMACIÓN)ESPACIOS DE BANACHFÍSICA CUÁNTICAANÁLISIS MATEMÁTICOGEOMETRÍA DIFERENCIALFUNCIONES ANALÍTICASInformation theoryEntropy (information theory)Banach spacesQuantum physicalMathematical analysisGeometry, differentialAnalytic functionsEspacios de Orliczdepartment:Universidad EAFIT. Escuela de Ciencias. Grupo de Investigación Análisis Funcional y AplicacionesHéctor R. Quiceno (hquiceno@eafit.edu.co)Gabriel Loaiza (gloaiza@eafit.edu.co)Quiceno Echavarría, Héctor RománLoaiza Ossa, Gabriel IgnacioAnálisis Funcional y AplicacionesJournal of Mathematical Analysis and Applications3982476466LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/f55bb6a4-b52b-4cf5-983a-79795e400512/download76025f86b095439b7ac65b367055d40cMD51ORIGINAL2013.pdf2013.pdfapplication/pdf282428https://repository.eafit.edu.co/bitstreams/8a011e8a-26d5-4ef6-bb0c-37e6c407dab3/downloade3b76444d8a3ca93f9f4565f6ee07c07MD5210784/5245oai:repository.eafit.edu.co:10784/52452021-09-24 16:44:19.487restrictedhttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
A q-exponential statistical Banach manifold |
title |
A q-exponential statistical Banach manifold |
spellingShingle |
A q-exponential statistical Banach manifold TEORÍA DE LA INFORMACIÓN ENTROPÍA (TEORÍA DE LA INFORMACIÓN) ESPACIOS DE BANACH FÍSICA CUÁNTICA ANÁLISIS MATEMÁTICO GEOMETRÍA DIFERENCIAL FUNCIONES ANALÍTICAS Information theory Entropy (information theory) Banach spaces Quantum physical Mathematical analysis Geometry, differential Analytic functions Espacios de Orlicz |
title_short |
A q-exponential statistical Banach manifold |
title_full |
A q-exponential statistical Banach manifold |
title_fullStr |
A q-exponential statistical Banach manifold |
title_full_unstemmed |
A q-exponential statistical Banach manifold |
title_sort |
A q-exponential statistical Banach manifold |
dc.creator.fl_str_mv |
Quiceno Echavarría, Héctor Román Loaiza Ossa, Gabriel Ignacio |
dc.contributor.department.none.fl_str_mv |
department:Universidad EAFIT. Escuela de Ciencias. Grupo de Investigación Análisis Funcional y Aplicaciones |
dc.contributor.eafitauthor.spa.fl_str_mv |
Héctor R. Quiceno (hquiceno@eafit.edu.co) Gabriel Loaiza (gloaiza@eafit.edu.co) |
dc.contributor.author.none.fl_str_mv |
Quiceno Echavarría, Héctor Román Loaiza Ossa, Gabriel Ignacio |
dc.contributor.researchgroup.spa.fl_str_mv |
Análisis Funcional y Aplicaciones |
dc.subject.lemb.spa.fl_str_mv |
TEORÍA DE LA INFORMACIÓN ENTROPÍA (TEORÍA DE LA INFORMACIÓN) ESPACIOS DE BANACH FÍSICA CUÁNTICA ANÁLISIS MATEMÁTICO GEOMETRÍA DIFERENCIAL FUNCIONES ANALÍTICAS |
topic |
TEORÍA DE LA INFORMACIÓN ENTROPÍA (TEORÍA DE LA INFORMACIÓN) ESPACIOS DE BANACH FÍSICA CUÁNTICA ANÁLISIS MATEMÁTICO GEOMETRÍA DIFERENCIAL FUNCIONES ANALÍTICAS Information theory Entropy (information theory) Banach spaces Quantum physical Mathematical analysis Geometry, differential Analytic functions Espacios de Orlicz |
dc.subject.keyword.eng.fl_str_mv |
Information theory Entropy (information theory) Banach spaces Quantum physical Mathematical analysis Geometry, differential Analytic functions |
dc.subject.keyword.spa.fl_str_mv |
Espacios de Orlicz |
description |
Letµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed exponential), where 0 < q < 1 is any real number -- This family is characterized by the fact that when q → 1, then the non-parametric exponential models are obtained and the manifold constructed by Pistone and Sempi is recovered, up to continuous embeddings on the modeling space -- The coordinate mappings of the manifold are given in terms of Csiszár’s Φ-divergences; the tangent vectors are identified with the one-dimensional q-exponential models and q-deformations of the score function |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013-02 |
dc.date.available.none.fl_str_mv |
2015-04-24T16:18:49Z |
dc.date.accessioned.none.fl_str_mv |
2015-04-24T16:18:49Z |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
G. Loaiza, H.R. Quiceno, A -exponential statistical Banach manifold, Journal of Mathematical Analysis and Applications, Volume 398, Issue 2, 15 February 2013, Pages 466-476, ISSN 0022-247X, http://dx.doi.org/10.1016/j.jmaa.2012.08.046. (http://www.sciencedirect.com/science/article/pii/S0022247X12006981) |
dc.identifier.issn.spa.fl_str_mv |
0022-247X |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/5245 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.jmaa.2012.08.046 |
identifier_str_mv |
G. Loaiza, H.R. Quiceno, A -exponential statistical Banach manifold, Journal of Mathematical Analysis and Applications, Volume 398, Issue 2, 15 February 2013, Pages 466-476, ISSN 0022-247X, http://dx.doi.org/10.1016/j.jmaa.2012.08.046. (http://www.sciencedirect.com/science/article/pii/S0022247X12006981) 0022-247X 10.1016/j.jmaa.2012.08.046 |
url |
http://hdl.handle.net/10784/5245 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
Journal of Mathematical Analysis and Applications Volume 398, Issue 2, 15 February 2013, Pages 466–476 |
dc.relation.uri.none.fl_str_mv |
http://dx.doi.org/10.1016/j.jmaa.2012.08.046 |
dc.rights.spa.fl_str_mv |
Copyright © 2012 Elsevier Ltd. All rights reserved. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.local.spa.fl_str_mv |
Acceso restringido |
rights_invalid_str_mv |
Copyright © 2012 Elsevier Ltd. All rights reserved. Acceso restringido http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
ELSEVIER |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/f55bb6a4-b52b-4cf5-983a-79795e400512/download https://repository.eafit.edu.co/bitstreams/8a011e8a-26d5-4ef6-bb0c-37e6c407dab3/download |
bitstream.checksum.fl_str_mv |
76025f86b095439b7ac65b367055d40c e3b76444d8a3ca93f9f4565f6ee07c07 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110416942399488 |