A q-exponential statistical Banach manifold
Letµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed ex...
- Autores:
-
Quiceno Echavarría, Héctor Román
Loaiza Ossa, Gabriel Ignacio
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/5245
- Acceso en línea:
- http://hdl.handle.net/10784/5245
- Palabra clave:
- TEORÍA DE LA INFORMACIÓN
ENTROPÍA (TEORÍA DE LA INFORMACIÓN)
ESPACIOS DE BANACH
FÍSICA CUÁNTICA
ANÁLISIS MATEMÁTICO
GEOMETRÍA DIFERENCIAL
FUNCIONES ANALÍTICAS
Information theory
Entropy (information theory)
Banach spaces
Quantum physical
Mathematical analysis
Geometry, differential
Analytic functions
Espacios de Orlicz
- Rights
- License
- Copyright © 2012 Elsevier Ltd. All rights reserved.
Summary: | Letµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed exponential), where 0 < q < 1 is any real number -- This family is characterized by the fact that when q → 1, then the non-parametric exponential models are obtained and the manifold constructed by Pistone and Sempi is recovered, up to continuous embeddings on the modeling space -- The coordinate mappings of the manifold are given in terms of Csiszár’s Φ-divergences; the tangent vectors are identified with the one-dimensional q-exponential models and q-deformations of the score function |
---|