Improving DFT-based approaches to study CO2 electroreduction on transition metals

The industrial-scale conversion of electricity obtained from renewable sources is crucial to achieve an economy based on renewable energy. In that scenario, the electrochemical reduction of CO2, offers the possibility of producing some of the most demanded fuels and chemicals in a sustainable way. H...

Full description

Autores:
Rendón Calle, Jessica Alejandra
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/29605
Acceso en línea:
http://hdl.handle.net/10784/29605
Palabra clave:
Reducción electroquímica del CO2
Electrocatálisis
Cálculos DFT
Energías de adsorción
Correcciones de solvatación
Mecanismos de reacción
Cobre
Desactivación
Factor de simetría
ELECTROQUÍMICA
ANÁLISIS ELECTROQUÍMICO
METALES DE TRANSICIÓN
TERMODINÁMICA
CO2 electroreduction
CO2RR
Electrocatalysis
DFT calculations
Adsorption energies
Adsorbate-solvent interactions
Solvation corrections
Reaction pathways
Copper
Transition metals
Competing reaction mechanisms
Deactivation
Symmetry factor
Rights
License
Todos los derechos reservados
id REPOEAFIT2_46b74b612c4da1ed6ef0da2994916f57
oai_identifier_str oai:repository.eafit.edu.co:10784/29605
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.spa.fl_str_mv Improving DFT-based approaches to study CO2 electroreduction on transition metals
title Improving DFT-based approaches to study CO2 electroreduction on transition metals
spellingShingle Improving DFT-based approaches to study CO2 electroreduction on transition metals
Reducción electroquímica del CO2
Electrocatálisis
Cálculos DFT
Energías de adsorción
Correcciones de solvatación
Mecanismos de reacción
Cobre
Desactivación
Factor de simetría
ELECTROQUÍMICA
ANÁLISIS ELECTROQUÍMICO
METALES DE TRANSICIÓN
TERMODINÁMICA
CO2 electroreduction
CO2RR
Electrocatalysis
DFT calculations
Adsorption energies
Adsorbate-solvent interactions
Solvation corrections
Reaction pathways
Copper
Transition metals
Competing reaction mechanisms
Deactivation
Symmetry factor
title_short Improving DFT-based approaches to study CO2 electroreduction on transition metals
title_full Improving DFT-based approaches to study CO2 electroreduction on transition metals
title_fullStr Improving DFT-based approaches to study CO2 electroreduction on transition metals
title_full_unstemmed Improving DFT-based approaches to study CO2 electroreduction on transition metals
title_sort Improving DFT-based approaches to study CO2 electroreduction on transition metals
dc.creator.fl_str_mv Rendón Calle, Jessica Alejandra
dc.contributor.advisor.spa.fl_str_mv Calle Vallejo, Federico
Builes Toro, Santiago
dc.contributor.author.none.fl_str_mv Rendón Calle, Jessica Alejandra
dc.subject.spa.fl_str_mv Reducción electroquímica del CO2
Electrocatálisis
Cálculos DFT
Energías de adsorción
Correcciones de solvatación
Mecanismos de reacción
Cobre
Desactivación
Factor de simetría
topic Reducción electroquímica del CO2
Electrocatálisis
Cálculos DFT
Energías de adsorción
Correcciones de solvatación
Mecanismos de reacción
Cobre
Desactivación
Factor de simetría
ELECTROQUÍMICA
ANÁLISIS ELECTROQUÍMICO
METALES DE TRANSICIÓN
TERMODINÁMICA
CO2 electroreduction
CO2RR
Electrocatalysis
DFT calculations
Adsorption energies
Adsorbate-solvent interactions
Solvation corrections
Reaction pathways
Copper
Transition metals
Competing reaction mechanisms
Deactivation
Symmetry factor
dc.subject.lemb.spa.fl_str_mv ELECTROQUÍMICA
ANÁLISIS ELECTROQUÍMICO
METALES DE TRANSICIÓN
TERMODINÁMICA
dc.subject.keyword.spa.fl_str_mv CO2 electroreduction
CO2RR
Electrocatalysis
DFT calculations
Adsorption energies
Adsorbate-solvent interactions
Solvation corrections
Reaction pathways
Copper
Transition metals
Competing reaction mechanisms
Deactivation
Symmetry factor
description The industrial-scale conversion of electricity obtained from renewable sources is crucial to achieve an economy based on renewable energy. In that scenario, the electrochemical reduction of CO2, offers the possibility of producing some of the most demanded fuels and chemicals in a sustainable way. However, its efficient implementation on industrial scale is limited by factors as the high energy requirements for the product formation, the low selectivity and efficiency of electrolyzers, and the long-term deactivation of the catalysts. Understanding the many aspects that influence the reaction behavior is a challenging task because, apart from solvent and electrolyte effects, there are multiple intermediates, pathways, and products possible under similar operating conditions. In the recent decades this research field has been highly active in theory and experiments, and many studies have focused on finding the main factors that enhance the reaction performance. In this thesis, the electrochemical CO2 reduction is studied using state-of-the-art density functional theory (DFT) simulations, incorporating solvation effects as a crucial factor for improving thermodynamic predictions. To this end, a systematic micro-solvation method was developed to determine the number of hydrogen-bonded water molecules in the first solvation shell and the energetic stabilization granted by those hydrogen bonds. The reduction of CO2 to CO, CH4 and CH3OH on Cu, was considered to test this method, finding very good agreement with experiments without the need to include calculations of reaction kinetics. The estimation of solvation contributions for the CO2 reduction to CO has been extended to other transition metals such as Ag, Au, and Zn, finding significant variations between solvation corrections for the same adsorbates on different metals and finding very good agreement with experimental results. The increase in accuracy of the predictions make possible the development of a semiempirical method to explain the deactivation evidenced experimentally on Cu electrodes during CO2RR to CH4.
publishDate 2021
dc.date.available.none.fl_str_mv 2021-04-20T17:33:11Z
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2021-04-20T17:33:11Z
dc.type.eng.fl_str_mv doctoralThesis
info:eu-repo/semantics/doctoralThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.local.spa.fl_str_mv Tesis Doctoral
dc.type.hasVersion.eng.fl_str_mv acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/29605
dc.identifier.ddc.none.fl_str_mv 660.297 R397
url http://hdl.handle.net/10784/29605
identifier_str_mv 660.297 R397
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Todos los derechos reservados
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Todos los derechos reservados
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.eng.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.program.spa.fl_str_mv Doctorado en Ingeniería
dc.publisher.department.spa.fl_str_mv Escuela de Ingeniería
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/20df373a-3cfd-40d1-a084-72877417cd10/download
https://repository.eafit.edu.co/bitstreams/d0353c2f-2c7e-490e-ae66-1c20cc942885/download
https://repository.eafit.edu.co/bitstreams/4ec33063-cea9-4b9b-81c9-ae0366aa7361/download
https://repository.eafit.edu.co/bitstreams/ce39324b-36cd-4107-a762-c4312a769eba/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
afb6203f3e6e24ee53b4ba8629fa463c
b47707b6bb6a203745094a238100ea11
adf1863fa06335c5b73dfaf253775bef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1808498905798672384
spelling Calle Vallejo, FedericoBuiles Toro, SantiagoRendón Calle, Jessica AlejandraDoctor in EngineeringUniversidad EAFITjrendon8@eafit.edu.coMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2021-04-20T17:33:11Z20212021-04-20T17:33:11Zhttp://hdl.handle.net/10784/29605660.297 R397The industrial-scale conversion of electricity obtained from renewable sources is crucial to achieve an economy based on renewable energy. In that scenario, the electrochemical reduction of CO2, offers the possibility of producing some of the most demanded fuels and chemicals in a sustainable way. However, its efficient implementation on industrial scale is limited by factors as the high energy requirements for the product formation, the low selectivity and efficiency of electrolyzers, and the long-term deactivation of the catalysts. Understanding the many aspects that influence the reaction behavior is a challenging task because, apart from solvent and electrolyte effects, there are multiple intermediates, pathways, and products possible under similar operating conditions. In the recent decades this research field has been highly active in theory and experiments, and many studies have focused on finding the main factors that enhance the reaction performance. In this thesis, the electrochemical CO2 reduction is studied using state-of-the-art density functional theory (DFT) simulations, incorporating solvation effects as a crucial factor for improving thermodynamic predictions. To this end, a systematic micro-solvation method was developed to determine the number of hydrogen-bonded water molecules in the first solvation shell and the energetic stabilization granted by those hydrogen bonds. The reduction of CO2 to CO, CH4 and CH3OH on Cu, was considered to test this method, finding very good agreement with experiments without the need to include calculations of reaction kinetics. The estimation of solvation contributions for the CO2 reduction to CO has been extended to other transition metals such as Ag, Au, and Zn, finding significant variations between solvation corrections for the same adsorbates on different metals and finding very good agreement with experimental results. The increase in accuracy of the predictions make possible the development of a semiempirical method to explain the deactivation evidenced experimentally on Cu electrodes during CO2RR to CH4.application/pdfspaUniversidad EAFITDoctorado en IngenieríaEscuela de IngenieríaMedellínTodos los derechos reservadosAcceso abiertohttp://purl.org/coar/access_right/c_abf2Reducción electroquímica del CO2ElectrocatálisisCálculos DFTEnergías de adsorciónCorrecciones de solvataciónMecanismos de reacciónCobreDesactivaciónFactor de simetríaELECTROQUÍMICAANÁLISIS ELECTROQUÍMICOMETALES DE TRANSICIÓNTERMODINÁMICACO2 electroreductionCO2RRElectrocatalysisDFT calculationsAdsorption energiesAdsorbate-solvent interactionsSolvation correctionsReaction pathwaysCopperTransition metalsCompeting reaction mechanismsDeactivationSymmetry factorImproving DFT-based approaches to study CO2 electroreduction on transition metalsdoctoralThesisinfo:eu-repo/semantics/doctoralThesisTesis DoctoralacceptedVersionhttp://purl.org/coar/resource_type/c_db06LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/20df373a-3cfd-40d1-a084-72877417cd10/download76025f86b095439b7ac65b367055d40cMD51ORIGINALRendonCalle_JessicaAlejandra_2021.pdfRendonCalle_JessicaAlejandra_2021.pdfTrabajo de gradoapplication/pdf3502083https://repository.eafit.edu.co/bitstreams/d0353c2f-2c7e-490e-ae66-1c20cc942885/downloadafb6203f3e6e24ee53b4ba8629fa463cMD52carta_aprobacion_trabajo_grado_eafit.pdfcarta_aprobacion_trabajo_grado_eafit.pdfCarta de aprobación de tesis de gradoapplication/pdf206205https://repository.eafit.edu.co/bitstreams/4ec33063-cea9-4b9b-81c9-ae0366aa7361/downloadb47707b6bb6a203745094a238100ea11MD53formulario_autorizacion_publicacion_obras.pdfformulario_autorizacion_publicacion_obras.pdfFormulario de autorización de publicación de obrasapplication/pdf4794791https://repository.eafit.edu.co/bitstreams/ce39324b-36cd-4107-a762-c4312a769eba/downloadadf1863fa06335c5b73dfaf253775befMD5410784/29605oai:repository.eafit.edu.co:10784/296052021-04-20 12:33:11.51open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co