Time-Frequency Energy Features for Articulator Position Inference on Stop Consonants

Acoustic-to-Articulatory inversion offers new perspectives and interesting applicationsin the speech processing field; however, it remains an open issue. This paper presents a method to estimate the distribution of the articulatory informationcontained in the stop consonants’ acoustics, whose parame...

Full description

Autores:
Sepulveda-Sepulveda, Alexander
Castellanos-Domínguez, German
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14448
Acceso en línea:
http://hdl.handle.net/10784/14448
Palabra clave:
Acoustic-To-Articulatory Inversion
Gaussian Mixture Models
Articulatory Phonetics
Time-Frequency Features
Inversión Acústica A Articulación
Modelos De Mezcla Gaussiana
Fonética Articulatoria
Características De Frecuencia De Tiempo
Rights
License
Copyright (c) 2012 Alexander Sepulveda-Sepulveda, German Castellanos-Domínguez
id REPOEAFIT2_444bab030cf659f59aeba8a08e6bd8f4
oai_identifier_str oai:repository.eafit.edu.co:10784/14448
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Time-Frequency Energy Features for Articulator Position Inference on Stop Consonants
dc.title.spa.fl_str_mv Características de tiempo-frecuencia para la estimación de la posición de los órganos articuladores en consonantes explosivas
title Time-Frequency Energy Features for Articulator Position Inference on Stop Consonants
spellingShingle Time-Frequency Energy Features for Articulator Position Inference on Stop Consonants
Acoustic-To-Articulatory Inversion
Gaussian Mixture Models
Articulatory Phonetics
Time-Frequency Features
Inversión Acústica A Articulación
Modelos De Mezcla Gaussiana
Fonética Articulatoria
Características De Frecuencia De Tiempo
title_short Time-Frequency Energy Features for Articulator Position Inference on Stop Consonants
title_full Time-Frequency Energy Features for Articulator Position Inference on Stop Consonants
title_fullStr Time-Frequency Energy Features for Articulator Position Inference on Stop Consonants
title_full_unstemmed Time-Frequency Energy Features for Articulator Position Inference on Stop Consonants
title_sort Time-Frequency Energy Features for Articulator Position Inference on Stop Consonants
dc.creator.fl_str_mv Sepulveda-Sepulveda, Alexander
Castellanos-Domínguez, German
dc.contributor.author.spa.fl_str_mv Sepulveda-Sepulveda, Alexander
Castellanos-Domínguez, German
dc.contributor.affiliation.spa.fl_str_mv Universidad Nacional de Colombia
dc.subject.keyword.eng.fl_str_mv Acoustic-To-Articulatory Inversion
Gaussian Mixture Models
Articulatory Phonetics
Time-Frequency Features
topic Acoustic-To-Articulatory Inversion
Gaussian Mixture Models
Articulatory Phonetics
Time-Frequency Features
Inversión Acústica A Articulación
Modelos De Mezcla Gaussiana
Fonética Articulatoria
Características De Frecuencia De Tiempo
dc.subject.keyword.spa.fl_str_mv Inversión Acústica A Articulación
Modelos De Mezcla Gaussiana
Fonética Articulatoria
Características De Frecuencia De Tiempo
description Acoustic-to-Articulatory inversion offers new perspectives and interesting applicationsin the speech processing field; however, it remains an open issue. This paper presents a method to estimate the distribution of the articulatory informationcontained in the stop consonants’ acoustics, whose parametrizationis achieved by using the wavelet packet transform. The main focus is on measuringthe relevant acoustic information, in terms of statistical association, forthe inference of the position of critical articulators involved in stop consonantsproduction. The rank correlation Kendall coefficient is used as the relevance measure. The maps of relevant time–frequency features are calculated for theMOCHA–TIMIT database; from which, stop consonants are extracted andanalysed. The proposed method obtains a set of time–frequency components closely related to articulatory phenemenon, which offers a deeper understanding into the relationship between the articulatory and acoustical phenomena.The relevant maps are tested into an acoustic–to–articulatory mapping systembased on Gaussian mixture models, where it is shown they are suitable for improvingthe performance of such a systems over stop consonants. The method could be extended to other manner of articulation categories, e.g. fricatives,in order to adapt present method to acoustic-to-articulatory mapping systemsover whole speech.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012-12-01
dc.date.available.none.fl_str_mv 2019-11-22T18:49:13Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T18:49:13Z
dc.date.none.fl_str_mv 2012-12-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14448
dc.identifier.doi.none.fl_str_mv 10.17230/ingciencia.8.16.2
identifier_str_mv 2256-4314
1794-9165
10.17230/ingciencia.8.16.2
url http://hdl.handle.net/10784/14448
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1705
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1705
dc.rights.eng.fl_str_mv Copyright (c) 2012 Alexander Sepulveda-Sepulveda, German Castellanos-Domínguez
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2012 Alexander Sepulveda-Sepulveda, German Castellanos-Domínguez
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 8, No 16 (2012)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/15ceb5f2-36ff-4706-84d8-fbc3c47464fd/download
https://repository.eafit.edu.co/bitstreams/b459da98-4b65-4e58-9459-b95ce7e522b0/download
https://repository.eafit.edu.co/bitstreams/a7fa2837-17fc-4b1a-b46f-c893f32d416f/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
7cc652a80e6a0c36f3ed433d31b89886
455d8fd7ca60be49f43901e3ea58469e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110395890139136
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2012-12-012019-11-22T18:49:13Z2012-12-012019-11-22T18:49:13Z2256-43141794-9165http://hdl.handle.net/10784/1444810.17230/ingciencia.8.16.2Acoustic-to-Articulatory inversion offers new perspectives and interesting applicationsin the speech processing field; however, it remains an open issue. This paper presents a method to estimate the distribution of the articulatory informationcontained in the stop consonants’ acoustics, whose parametrizationis achieved by using the wavelet packet transform. The main focus is on measuringthe relevant acoustic information, in terms of statistical association, forthe inference of the position of critical articulators involved in stop consonantsproduction. The rank correlation Kendall coefficient is used as the relevance measure. The maps of relevant time–frequency features are calculated for theMOCHA–TIMIT database; from which, stop consonants are extracted andanalysed. The proposed method obtains a set of time–frequency components closely related to articulatory phenemenon, which offers a deeper understanding into the relationship between the articulatory and acoustical phenomena.The relevant maps are tested into an acoustic–to–articulatory mapping systembased on Gaussian mixture models, where it is shown they are suitable for improvingthe performance of such a systems over stop consonants. The method could be extended to other manner of articulation categories, e.g. fricatives,in order to adapt present method to acoustic-to-articulatory mapping systemsover whole speech.La inversión acústica a articulación ofrece nuevas perspectivas y aplicaciones interesantes en el campo del procesamiento del habla; Sin embargo, sigue siendo un tema abierto. Este artículo presenta un método para estimar la distribución de la información articulatoria contenida en la acústica de las consonantes de parada, cuya parametrización se logra utilizando la transformación del paquete wavelet. El enfoque principal está en medir la información acústica relevante, en términos de asociación estadística, para la inferencia de la posición de los articuladores críticos involucrados en la producción de consonantes de parada. El coeficiente de Kendall de correlación de rango se utiliza como medida de relevancia. Los mapas de las características relevantes de tiempo-frecuencia se calculan para la base de datos MOCHA-TIMIT; de donde se extraen las consonantes y se analizan. El método propuesto obtiene un conjunto de componentes de frecuencia de tiempo estrechamente relacionados con el fenómeno de articulación, que ofrece una comprensión más profunda de la relación entre los fenómenos articulatorio y acústico. Los mapas relevantes se prueban en un sistema de mapeo acústico-articulatorio basado en modelos de mezcla gaussiana , donde se muestra que son adecuados para mejorar el rendimiento de tales sistemas sobre las consonantes de parada. El método podría extenderse a otro tipo de categorías de articulación, p. Ej. fricativas, con el fin de adaptar el método actual al sistema de mapeo acústico a articulatorio en todo el discurso.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1705http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1705Copyright (c) 2012 Alexander Sepulveda-Sepulveda, German Castellanos-DomínguezAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 8, No 16 (2012)Time-Frequency Energy Features for Articulator Position Inference on Stop ConsonantsCaracterísticas de tiempo-frecuencia para la estimación de la posición de los órganos articuladores en consonantes explosivasarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Acoustic-To-Articulatory InversionGaussian Mixture ModelsArticulatory PhoneticsTime-Frequency FeaturesInversión Acústica A ArticulaciónModelos De Mezcla GaussianaFonética ArticulatoriaCaracterísticas De Frecuencia De TiempoSepulveda-Sepulveda, AlexanderCastellanos-Domínguez, GermanUniversidad Nacional de ColombiaIngeniería y Ciencia8163756ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/15ceb5f2-36ff-4706-84d8-fbc3c47464fd/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL2.pdf2.pdfTexto completo PDFapplication/pdf362831https://repository.eafit.edu.co/bitstreams/b459da98-4b65-4e58-9459-b95ce7e522b0/download7cc652a80e6a0c36f3ed433d31b89886MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/a7fa2837-17fc-4b1a-b46f-c893f32d416f/download455d8fd7ca60be49f43901e3ea58469eMD5310784/14448oai:repository.eafit.edu.co:10784/144482020-03-02 21:49:43.419open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co