A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type

In this paper we present a survey of some algebraic characterizations of Hilbert’s Nullstellensatz for non-commutative rings of polynomial type. Using several results established in the literature, we obtain a version of this theorem for the skew Poincaré-Birkhoff-Witt extensions. Once this is done,...

Full description

Autores:
Reyes, Armando
Hernández-Mogollón, Jason
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/17662
Acceso en línea:
http://hdl.handle.net/10784/17662
Palabra clave:
Hilbert’s Nullstellensatz
Skew PBW extension
Jacobson ring
Generic flatness
Teorema de ceros de Hilbert
Extensión PBW torcida
Anillo de Jacobson
Plenitud genérica
Rights
License
Copyright © 2020 Armando Reyes, Jason Hernández-Mogollón
id REPOEAFIT2_43d6885f465f5028be94d9c68e2bcbce
oai_identifier_str oai:repository.eafit.edu.co:10784/17662
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2020-06-192020-09-04T16:41:31Z2020-06-192020-09-04T16:41:31Z1794-9165http://hdl.handle.net/10784/17662In this paper we present a survey of some algebraic characterizations of Hilbert’s Nullstellensatz for non-commutative rings of polynomial type. Using several results established in the literature, we obtain a version of this theorem for the skew Poincaré-Birkhoff-Witt extensions. Once this is done, we illustrate the Nullstellensatz with examples appearing in noncommutative ring theory and non-commutative algebraic geometry.En este artículo presentamos un estudio sobre algunas caracterizaciones algebraicas del teorema de Nullstellensatz de Hilbert para anillos no conmutativos de tipo polinomial. Utilizando varios resultados establecidos en la literatura, obtuvimos una versión de este teorema para las extensiones de Poincaré-Birkhoff-Witt. Una vez hecho esto, ilustramos el Nullstellensatz con ejemplos que aparecen en la teoría de los anillos no conmutativa y en la geometría algebraica no conmutativa.application/pdfengUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6023https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6023Copyright © 2020 Armando Reyes, Jason Hernández-MogollónAcceso abiertohttp://purl.org/coar/access_right/c_abf2Ingeniería y Ciencia, Vol. 16, Núm. 31 (2020)A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial TypeUn estudio sobre algunas caracterizaciones algebraicas del teorema de ceros de Hilbert para anillos no conmutativos de tipo polinomialarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hilbert’s NullstellensatzSkew PBW extensionJacobson ringGeneric flatnessTeorema de ceros de HilbertExtensión PBW torcidaAnillo de JacobsonPlenitud genéricaReyes, ArmandoHernández-Mogollón, JasonUniversidad Nacional de ColombiaIngeniería y Ciencia16312752THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/1443760f-15bb-4463-b155-ab2c1f357968/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL6023-Article Text-21866-1-10-20200620.pdf6023-Article Text-21866-1-10-20200620.pdfTexto completo PDFapplication/pdf625673https://repository.eafit.edu.co/bitstreams/48f65ed0-3636-46a4-b8f4-32aa5e07b7cb/downloadc3440e6c9bd720649508bab7468d478bMD52articulo - copia (2).htmlarticulo - copia (2).htmlTexto completo HTMLtext/html375https://repository.eafit.edu.co/bitstreams/0164ca83-5fd7-4f41-ab02-3a6d07dc092c/download5ff6a957eb9ee9fbaa0cf43d74a42aeaMD5310784/17662oai:repository.eafit.edu.co:10784/176622020-09-21 08:49:21.208open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type
dc.title.spa.fl_str_mv Un estudio sobre algunas caracterizaciones algebraicas del teorema de ceros de Hilbert para anillos no conmutativos de tipo polinomial
title A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type
spellingShingle A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type
Hilbert’s Nullstellensatz
Skew PBW extension
Jacobson ring
Generic flatness
Teorema de ceros de Hilbert
Extensión PBW torcida
Anillo de Jacobson
Plenitud genérica
title_short A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type
title_full A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type
title_fullStr A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type
title_full_unstemmed A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type
title_sort A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type
dc.creator.fl_str_mv Reyes, Armando
Hernández-Mogollón, Jason
dc.contributor.author.spa.fl_str_mv Reyes, Armando
Hernández-Mogollón, Jason
dc.contributor.affiliation.spa.fl_str_mv Universidad Nacional de Colombia
dc.subject.keyword.eng.fl_str_mv Hilbert’s Nullstellensatz
Skew PBW extension
Jacobson ring
Generic flatness
topic Hilbert’s Nullstellensatz
Skew PBW extension
Jacobson ring
Generic flatness
Teorema de ceros de Hilbert
Extensión PBW torcida
Anillo de Jacobson
Plenitud genérica
dc.subject.keyword.spa.fl_str_mv Teorema de ceros de Hilbert
Extensión PBW torcida
Anillo de Jacobson
Plenitud genérica
description In this paper we present a survey of some algebraic characterizations of Hilbert’s Nullstellensatz for non-commutative rings of polynomial type. Using several results established in the literature, we obtain a version of this theorem for the skew Poincaré-Birkhoff-Witt extensions. Once this is done, we illustrate the Nullstellensatz with examples appearing in noncommutative ring theory and non-commutative algebraic geometry.
publishDate 2020
dc.date.available.none.fl_str_mv 2020-09-04T16:41:31Z
dc.date.issued.none.fl_str_mv 2020-06-19
dc.date.accessioned.none.fl_str_mv 2020-09-04T16:41:31Z
dc.date.none.fl_str_mv 2020-06-19
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/17662
identifier_str_mv 1794-9165
url http://hdl.handle.net/10784/17662
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6023
dc.relation.uri.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6023
dc.rights.eng.fl_str_mv Copyright © 2020 Armando Reyes, Jason Hernández-Mogollón
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright © 2020 Armando Reyes, Jason Hernández-Mogollón
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia, Vol. 16, Núm. 31 (2020)
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/1443760f-15bb-4463-b155-ab2c1f357968/download
https://repository.eafit.edu.co/bitstreams/48f65ed0-3636-46a4-b8f4-32aa5e07b7cb/download
https://repository.eafit.edu.co/bitstreams/0164ca83-5fd7-4f41-ab02-3a6d07dc092c/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
c3440e6c9bd720649508bab7468d478b
5ff6a957eb9ee9fbaa0cf43d74a42aea
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110371674324992