A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type

In this paper we present a survey of some algebraic characterizations of Hilbert’s Nullstellensatz for non-commutative rings of polynomial type. Using several results established in the literature, we obtain a version of this theorem for the skew Poincaré-Birkhoff-Witt extensions. Once this is done,...

Full description

Autores:
Reyes, Armando
Hernández-Mogollón, Jason
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/17662
Acceso en línea:
http://hdl.handle.net/10784/17662
Palabra clave:
Hilbert’s Nullstellensatz
Skew PBW extension
Jacobson ring
Generic flatness
Teorema de ceros de Hilbert
Extensión PBW torcida
Anillo de Jacobson
Plenitud genérica
Rights
License
Copyright © 2020 Armando Reyes, Jason Hernández-Mogollón
Description
Summary:In this paper we present a survey of some algebraic characterizations of Hilbert’s Nullstellensatz for non-commutative rings of polynomial type. Using several results established in the literature, we obtain a version of this theorem for the skew Poincaré-Birkhoff-Witt extensions. Once this is done, we illustrate the Nullstellensatz with examples appearing in noncommutative ring theory and non-commutative algebraic geometry.