A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type
In this paper we present a survey of some algebraic characterizations of Hilbert’s Nullstellensatz for non-commutative rings of polynomial type. Using several results established in the literature, we obtain a version of this theorem for the skew Poincaré-Birkhoff-Witt extensions. Once this is done,...
- Autores:
-
Reyes, Armando
Hernández-Mogollón, Jason
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/17662
- Acceso en línea:
- http://hdl.handle.net/10784/17662
- Palabra clave:
- Hilbert’s Nullstellensatz
Skew PBW extension
Jacobson ring
Generic flatness
Teorema de ceros de Hilbert
Extensión PBW torcida
Anillo de Jacobson
Plenitud genérica
- Rights
- License
- Copyright © 2020 Armando Reyes, Jason Hernández-Mogollón
Summary: | In this paper we present a survey of some algebraic characterizations of Hilbert’s Nullstellensatz for non-commutative rings of polynomial type. Using several results established in the literature, we obtain a version of this theorem for the skew Poincaré-Birkhoff-Witt extensions. Once this is done, we illustrate the Nullstellensatz with examples appearing in noncommutative ring theory and non-commutative algebraic geometry. |
---|