Estimation of real estate asset pricing models
In this project we aim to develop 4 different methods in order to estimate the real market price of 380 properties owned by Midtown Realty Group in Miami, Florida -- We used the ordinary least squares, generalized method of moments, artificial neural networks and fuzzy inference systems -- The compa...
- Autores:
-
Arias Arbeláez, Felipe Alonso
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/12335
- Acceso en línea:
- http://hdl.handle.net/10784/12335
- Palabra clave:
- Método generalizado de momentos
Real estate
Estimation
Econometrics
MERCADO DE LA VIVIENDA
MÍNIMOS CUADRADOS
MODELOS ECONOMÉTRICOS
ÍNDICE DE PRECIOS
Housing market
Least squares
Econometric models
Price indexes
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_3d11702ecd1cfca7f4c27795142150f8 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/12335 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estimation of real estate asset pricing models |
title |
Estimation of real estate asset pricing models |
spellingShingle |
Estimation of real estate asset pricing models Método generalizado de momentos Real estate Estimation Econometrics MERCADO DE LA VIVIENDA MÍNIMOS CUADRADOS MODELOS ECONOMÉTRICOS ÍNDICE DE PRECIOS Housing market Least squares Econometric models Price indexes |
title_short |
Estimation of real estate asset pricing models |
title_full |
Estimation of real estate asset pricing models |
title_fullStr |
Estimation of real estate asset pricing models |
title_full_unstemmed |
Estimation of real estate asset pricing models |
title_sort |
Estimation of real estate asset pricing models |
dc.creator.fl_str_mv |
Arias Arbeláez, Felipe Alonso |
dc.contributor.advisor.spa.fl_str_mv |
Zuluaga Díaz, Francisco Iván |
dc.contributor.author.none.fl_str_mv |
Arias Arbeláez, Felipe Alonso |
dc.subject.spa.fl_str_mv |
Método generalizado de momentos |
topic |
Método generalizado de momentos Real estate Estimation Econometrics MERCADO DE LA VIVIENDA MÍNIMOS CUADRADOS MODELOS ECONOMÉTRICOS ÍNDICE DE PRECIOS Housing market Least squares Econometric models Price indexes |
dc.subject.ddc.spa.fl_str_mv |
Real estate Estimation Econometrics |
dc.subject.lemb.spa.fl_str_mv |
MERCADO DE LA VIVIENDA MÍNIMOS CUADRADOS MODELOS ECONOMÉTRICOS ÍNDICE DE PRECIOS |
dc.subject.keyword.spa.fl_str_mv |
Housing market Least squares Econometric models Price indexes |
description |
In this project we aim to develop 4 different methods in order to estimate the real market price of 380 properties owned by Midtown Realty Group in Miami, Florida -- We used the ordinary least squares, generalized method of moments, artificial neural networks and fuzzy inference systems -- The comparison between the 4 models was made using the root mean squared errors (RMSE) with an interesting result showing that the best method to estimate housing price given our data set is the artificial neural network using the correct network architecture -- Some further work is proposed in order to make more comparison between the models and dene the best model for housing price |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.available.none.fl_str_mv |
2018-06-01T02:29:09Z |
dc.date.accessioned.none.fl_str_mv |
2018-06-01T02:29:09Z |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.hasVersion.eng.fl_str_mv |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/12335 |
dc.identifier.local.none.fl_str_mv |
330.015195CD A696E |
url |
http://hdl.handle.net/10784/12335 |
identifier_str_mv |
330.015195CD A696E |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.program.spa.fl_str_mv |
Economía |
dc.publisher.department.spa.fl_str_mv |
Escuela de Economía y Finanzas. Departamento de Economía. |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/cc1856c3-bc2f-422b-88e4-65a4b1a43b7a/download https://repository.eafit.edu.co/bitstreams/833c43c5-cf60-47ad-b85e-e69de6bf989a/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 19fdb578716b8fb0a1789176678efdcd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102404168548352 |
spelling |
Zuluaga Díaz, Francisco IvánArias Arbeláez, Felipe Alonso7b98aa25-d157-497a-a27f-8d61ddb1593d-1Economistafariasa@eafit.edu.coMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2018-06-01T02:29:09Z20162018-06-01T02:29:09Zhttp://hdl.handle.net/10784/12335330.015195CD A696EIn this project we aim to develop 4 different methods in order to estimate the real market price of 380 properties owned by Midtown Realty Group in Miami, Florida -- We used the ordinary least squares, generalized method of moments, artificial neural networks and fuzzy inference systems -- The comparison between the 4 models was made using the root mean squared errors (RMSE) with an interesting result showing that the best method to estimate housing price given our data set is the artificial neural network using the correct network architecture -- Some further work is proposed in order to make more comparison between the models and dene the best model for housing priceUniversidad EAFITEconomíaEscuela de Economía y Finanzas. Departamento de Economía.Método generalizado de momentosReal estateEstimationEconometricsMERCADO DE LA VIVIENDAMÍNIMOS CUADRADOSMODELOS ECONOMÉTRICOSÍNDICE DE PRECIOSHousing marketLeast squaresEconometric modelsPrice indexesEstimation of real estate asset pricing modelsbachelorThesisinfo:eu-repo/semantics/bachelorThesisTrabajo de gradoacceptedVersionhttp://purl.org/coar/resource_type/c_7a1fAcceso abiertohttp://purl.org/coar/access_right/c_abf2LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.eafit.edu.co/bitstreams/cc1856c3-bc2f-422b-88e4-65a4b1a43b7a/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALFelipeAlonso_AriasArbelaez_FranciscoIvan_ZuluagaDiaz_2016.pdfFelipeAlonso_AriasArbelaez_FranciscoIvan_ZuluagaDiaz_2016.pdfTrabajo de gradoapplication/pdf463408https://repository.eafit.edu.co/bitstreams/833c43c5-cf60-47ad-b85e-e69de6bf989a/download19fdb578716b8fb0a1789176678efdcdMD5210784/12335oai:repository.eafit.edu.co:10784/123352024-12-04 11:48:31.878open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |