A Proposal to increase by genetic algorithm the discriminatory
Two of the most widely used techniques in the field of face recognition with infrared images are PCA (Main Component Analyzes) and LDA (Linear Discriminant Analysis). This paper presents the results obtained by using genetic algorithms to increase the discriminant power of the vectors that make up t...
- Autores:
-
Martínez, Dúber
Loaiza C, Humberto
Caicedo B, Eduardo
- Tipo de recurso:
- Fecha de publicación:
- 2011
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14473
- Acceso en línea:
- http://hdl.handle.net/10784/14473
- Palabra clave:
- Face Recognition
Infrared Images
Genetic Algorithms
Principal Component Analysis
Linear Discriminant Analysis
Reconocimiento De Rostros
Imágenes Infrarrojas
Algoritmos Genéticos
Análisis De Componentes Principales
Análisis Discriminante Lineal
- Rights
- License
- Copyright (c) 2011 Dúber Martínez, Humberto Loaiza C, Eduardo Caicedo B
id |
REPOEAFIT2_3baf4372425b71aa167d5bbc4d49d2ed |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/14473 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2011-06-012019-11-22T18:55:38Z2011-06-012019-11-22T18:55:38Z2256-43141794-9165http://hdl.handle.net/10784/14473Two of the most widely used techniques in the field of face recognition with infrared images are PCA (Main Component Analyzes) and LDA (Linear Discriminant Analysis). This paper presents the results obtained by using genetic algorithms to increase the discriminant power of the vectors that make up the space of characteristics generated by these techniques, by means of the weighted allocation of weights to each vector according to their level of contribution in the stage of classification. It is shown that under the proposed scheme, a lower classification error is obtained with respect to the conventional method.Dos de las técnicas más ampliamente utilizadas en el campo del reconocimiento de rostros con imágenes infrarrojas son PCA (Principal Component Analisys) y LDA (Linear Discriminant Analysis). En este trabajo se presentan los resultados obtenidos al emplear algoritmos genéticos para incrementar el poder discriminante de los vectores que conforman el espacio de características generado por dichas técnicas, por medio de la asignación ponderada de pesos a cada vector según su nivel de aporte en la etapa de clasificación. Se muestra que bajo el esquema propuesto, se obtiene un menor error de clasificación respecto al método convencional.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/403http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/403Copyright (c) 2011 Dúber Martínez, Humberto Loaiza C, Eduardo Caicedo BAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 7, No 13 (2011)A Proposal to increase by genetic algorithm the discriminatoryUna propuesta para incrementar la capacidad discriminante de las técnicas PCA y LDA aplicadas al reconocimiento de rostros con imágenes IRarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Face RecognitionInfrared ImagesGenetic AlgorithmsPrincipal Component AnalysisLinear Discriminant AnalysisReconocimiento De RostrosImágenes InfrarrojasAlgoritmos GenéticosAnálisis De Componentes PrincipalesAnálisis Discriminante LinealMartínez, Dúberdd59f8c8-e405-4a41-8d14-5217954bc97c-1Loaiza C, Humberto38e5ad76-c6d2-4705-8fe3-57d5821d3d9c-1Caicedo B, Eduardoe66b5adf-c7ae-4424-a343-79b3241e023f-1Universidad del ValleIngeniería y Ciencia713111130ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/8be39da9-2450-4343-b7ee-e4357838151d/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL6.pdf6.pdfTexto completo PDFapplication/pdf311040https://repository.eafit.edu.co/bitstreams/4137b136-18ce-4ada-8173-a77726e6bf2f/download4060c6835b3e677aff97ea414ffd60e4MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/4d1151b4-074d-44a3-b28f-b3b0ae0539e2/download5f732d0fb8ff342e72ca9370055bbd0fMD5310784/14473oai:repository.eafit.edu.co:10784/144732024-12-04 11:47:08.212open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
A Proposal to increase by genetic algorithm the discriminatory |
dc.title.spa.fl_str_mv |
Una propuesta para incrementar la capacidad discriminante de las técnicas PCA y LDA aplicadas al reconocimiento de rostros con imágenes IR |
title |
A Proposal to increase by genetic algorithm the discriminatory |
spellingShingle |
A Proposal to increase by genetic algorithm the discriminatory Face Recognition Infrared Images Genetic Algorithms Principal Component Analysis Linear Discriminant Analysis Reconocimiento De Rostros Imágenes Infrarrojas Algoritmos Genéticos Análisis De Componentes Principales Análisis Discriminante Lineal |
title_short |
A Proposal to increase by genetic algorithm the discriminatory |
title_full |
A Proposal to increase by genetic algorithm the discriminatory |
title_fullStr |
A Proposal to increase by genetic algorithm the discriminatory |
title_full_unstemmed |
A Proposal to increase by genetic algorithm the discriminatory |
title_sort |
A Proposal to increase by genetic algorithm the discriminatory |
dc.creator.fl_str_mv |
Martínez, Dúber Loaiza C, Humberto Caicedo B, Eduardo |
dc.contributor.author.spa.fl_str_mv |
Martínez, Dúber Loaiza C, Humberto Caicedo B, Eduardo |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad del Valle |
dc.subject.keyword.eng.fl_str_mv |
Face Recognition Infrared Images Genetic Algorithms Principal Component Analysis Linear Discriminant Analysis |
topic |
Face Recognition Infrared Images Genetic Algorithms Principal Component Analysis Linear Discriminant Analysis Reconocimiento De Rostros Imágenes Infrarrojas Algoritmos Genéticos Análisis De Componentes Principales Análisis Discriminante Lineal |
dc.subject.keyword.spa.fl_str_mv |
Reconocimiento De Rostros Imágenes Infrarrojas Algoritmos Genéticos Análisis De Componentes Principales Análisis Discriminante Lineal |
description |
Two of the most widely used techniques in the field of face recognition with infrared images are PCA (Main Component Analyzes) and LDA (Linear Discriminant Analysis). This paper presents the results obtained by using genetic algorithms to increase the discriminant power of the vectors that make up the space of characteristics generated by these techniques, by means of the weighted allocation of weights to each vector according to their level of contribution in the stage of classification. It is shown that under the proposed scheme, a lower classification error is obtained with respect to the conventional method. |
publishDate |
2011 |
dc.date.issued.none.fl_str_mv |
2011-06-01 |
dc.date.available.none.fl_str_mv |
2019-11-22T18:55:38Z |
dc.date.accessioned.none.fl_str_mv |
2019-11-22T18:55:38Z |
dc.date.none.fl_str_mv |
2011-06-01 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/14473 |
identifier_str_mv |
2256-4314 1794-9165 |
url |
http://hdl.handle.net/10784/14473 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/403 |
dc.relation.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/403 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2011 Dúber Martínez, Humberto Loaiza C, Eduardo Caicedo B |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright (c) 2011 Dúber Martínez, Humberto Loaiza C, Eduardo Caicedo B Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia; Vol 7, No 13 (2011) |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/8be39da9-2450-4343-b7ee-e4357838151d/download https://repository.eafit.edu.co/bitstreams/4137b136-18ce-4ada-8173-a77726e6bf2f/download https://repository.eafit.edu.co/bitstreams/4d1151b4-074d-44a3-b28f-b3b0ae0539e2/download |
bitstream.checksum.fl_str_mv |
da9b21a5c7e00c7f1127cef8e97035e0 4060c6835b3e677aff97ea414ffd60e4 5f732d0fb8ff342e72ca9370055bbd0f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102380850315264 |