Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets
Surface reconstruction from cross cuts usually requires curve reconstruction from planar noisy point samples -- The output curves must form a possibly disconnected 1manifold for the surface reconstruction to proceed -- This article describes an implemented algorithm for the reconstruction of planar...
- Autores:
-
Ruíz, O.
Vanegas, C.
Cadavid, C.
- Tipo de recurso:
- Fecha de publicación:
- 2011
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/9681
- Acceso en línea:
- http://hdl.handle.net/10784/9681
- Palabra clave:
- CURVAS PLANAS
COLECTORES (INGENIERÍA)
TOPOLOGÍA
VARIEDADES (MATEMÁTICAS)
CORRELACIÓN (ESTADÍSTICA)
ANÁLISIS ESTOCÁSTICO
FUNCIONES ELÍPTICAS
Curves, plane
Topology
Manifolds (Mathematics)
Correlation (statistics)
Stochastic analysis
Functions, elliptic
Curves
plane
Topology
Manifolds (Mathematics)
Correlation (statistics)
Stochastic analysis
Functions
elliptic
Reconstrucción superficial
Nube de puntos
- Rights
- License
- Springer-Verlag 2010
id |
REPOEAFIT2_3864c229a2676609626863d4dc3157f3 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/9681 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets |
title |
Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets |
spellingShingle |
Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets CURVAS PLANAS COLECTORES (INGENIERÍA) TOPOLOGÍA VARIEDADES (MATEMÁTICAS) CORRELACIÓN (ESTADÍSTICA) ANÁLISIS ESTOCÁSTICO FUNCIONES ELÍPTICAS Curves, plane Topology Manifolds (Mathematics) Correlation (statistics) Stochastic analysis Functions, elliptic Curves plane Topology Manifolds (Mathematics) Correlation (statistics) Stochastic analysis Functions elliptic Reconstrucción superficial Nube de puntos |
title_short |
Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets |
title_full |
Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets |
title_fullStr |
Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets |
title_full_unstemmed |
Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets |
title_sort |
Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Sets |
dc.creator.fl_str_mv |
Ruíz, O. Vanegas, C. Cadavid, C. |
dc.contributor.department.spa.fl_str_mv |
Universidad EAFIT. Departamento de Ingeniería Mecánica |
dc.contributor.author.none.fl_str_mv |
Ruíz, O. Vanegas, C. Cadavid, C. |
dc.contributor.researchgroup.spa.fl_str_mv |
Laboratorio CAD/CAM/CAE |
dc.subject.lemb.spa.fl_str_mv |
CURVAS PLANAS COLECTORES (INGENIERÍA) TOPOLOGÍA VARIEDADES (MATEMÁTICAS) CORRELACIÓN (ESTADÍSTICA) ANÁLISIS ESTOCÁSTICO FUNCIONES ELÍPTICAS |
topic |
CURVAS PLANAS COLECTORES (INGENIERÍA) TOPOLOGÍA VARIEDADES (MATEMÁTICAS) CORRELACIÓN (ESTADÍSTICA) ANÁLISIS ESTOCÁSTICO FUNCIONES ELÍPTICAS Curves, plane Topology Manifolds (Mathematics) Correlation (statistics) Stochastic analysis Functions, elliptic Curves plane Topology Manifolds (Mathematics) Correlation (statistics) Stochastic analysis Functions elliptic Reconstrucción superficial Nube de puntos |
dc.subject.keyword.spa.fl_str_mv |
Curves, plane Topology Manifolds (Mathematics) Correlation (statistics) Stochastic analysis Functions, elliptic |
dc.subject.keyword.eng.fl_str_mv |
Curves plane Topology Manifolds (Mathematics) Correlation (statistics) Stochastic analysis Functions elliptic |
dc.subject.keyword..keywor.fl_str_mv |
Reconstrucción superficial Nube de puntos |
description |
Surface reconstruction from cross cuts usually requires curve reconstruction from planar noisy point samples -- The output curves must form a possibly disconnected 1manifold for the surface reconstruction to proceed -- This article describes an implemented algorithm for the reconstruction of planar curves (1manifolds) out of noisy point samples of a sel-fintersecting or nearly sel-fintersecting planar curve C -- C:[a,b]⊂R→R is self-intersecting if C(u)=C(v), u≠v, u,v∈(a,b) (C(u) is the self-intersection point) -- We consider only transversal self-intersections, i.e. those for which the tangents of the intersecting branches at the intersection point do not coincide (C′(u)≠C′(v)) -- In the presence of noise, curves which self-intersect cannot be distinguished from curves which nearly sel fintersect -- Existing algorithms for curve reconstruction out of either noisy point samples or pixel data, do not produce a (possibly disconnected) Piecewise Linear 1manifold approaching the whole point sample -- The algorithm implemented in this work uses Principal Component Analysis (PCA) with elliptic support regions near the selfintersections -- The algorithm was successful in recovering contours out of noisy slice samples of a surface, for the Hand, Pelvis and Skull data sets -- As a test for the correctness of the obtained curves in the slice levels, they were input into an algorithm of surface reconstruction, leading to a reconstructed surface which reproduces the topological and geometrical properties of the original object -- The algorithm robustly reacts not only to statistical noncorrelation at the self-intersections(nonmanifold neighborhoods) but also to occasional high noise at the nonselfintersecting (1manifold) neighborhoods |
publishDate |
2011 |
dc.date.issued.none.fl_str_mv |
2011 |
dc.date.available.none.fl_str_mv |
2016-11-18T22:14:34Z |
dc.date.accessioned.none.fl_str_mv |
2016-11-18T22:14:34Z |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/article article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1432-2315 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/9681 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s00371-010-0527-x |
identifier_str_mv |
1432-2315 10.1007/s00371-010-0527-x |
url |
http://hdl.handle.net/10784/9681 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
The Visual Computer, Collection: Computer Science, Volume 27, Issue 3, pp. 211-226 |
dc.relation.uri.none.fl_str_mv |
http://dx.doi.org/10.1007/s00371-010-0527-x |
dc.rights.spa.fl_str_mv |
Springer-Verlag 2010 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Springer-Verlag 2010 Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Berlin Heidelberg |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/ed051b32-3399-4237-ac4b-d9b9f0c90c7b/download https://repository.eafit.edu.co/bitstreams/acae92ca-193d-416a-8b1a-6eeef69707ea/download https://repository.eafit.edu.co/bitstreams/9b3bfd7b-1b8c-44e1-bb04-bce5dd42d2a6/download https://repository.eafit.edu.co/bitstreams/74cbcf4b-8e6c-43ea-8a09-d0904fa64050/download |
bitstream.checksum.fl_str_mv |
27c57ee2e2abdddeac12e4cf673df8de a2aade6429170950bac1f705e1bf6574 ded7104fc34db6ecdf18ea5d6094bcf9 76025f86b095439b7ac65b367055d40c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110543083995136 |
spelling |
2016-11-18T22:14:34Z20112016-11-18T22:14:34Z1432-2315http://hdl.handle.net/10784/968110.1007/s00371-010-0527-xSurface reconstruction from cross cuts usually requires curve reconstruction from planar noisy point samples -- The output curves must form a possibly disconnected 1manifold for the surface reconstruction to proceed -- This article describes an implemented algorithm for the reconstruction of planar curves (1manifolds) out of noisy point samples of a sel-fintersecting or nearly sel-fintersecting planar curve C -- C:[a,b]⊂R→R is self-intersecting if C(u)=C(v), u≠v, u,v∈(a,b) (C(u) is the self-intersection point) -- We consider only transversal self-intersections, i.e. those for which the tangents of the intersecting branches at the intersection point do not coincide (C′(u)≠C′(v)) -- In the presence of noise, curves which self-intersect cannot be distinguished from curves which nearly sel fintersect -- Existing algorithms for curve reconstruction out of either noisy point samples or pixel data, do not produce a (possibly disconnected) Piecewise Linear 1manifold approaching the whole point sample -- The algorithm implemented in this work uses Principal Component Analysis (PCA) with elliptic support regions near the selfintersections -- The algorithm was successful in recovering contours out of noisy slice samples of a surface, for the Hand, Pelvis and Skull data sets -- As a test for the correctness of the obtained curves in the slice levels, they were input into an algorithm of surface reconstruction, leading to a reconstructed surface which reproduces the topological and geometrical properties of the original object -- The algorithm robustly reacts not only to statistical noncorrelation at the self-intersections(nonmanifold neighborhoods) but also to occasional high noise at the nonselfintersecting (1manifold) neighborhoodsapplication/pdfengSpringer Berlin HeidelbergThe Visual Computer, Collection: Computer Science, Volume 27, Issue 3, pp. 211-226http://dx.doi.org/10.1007/s00371-010-0527-xSpringer-Verlag 2010Acceso abiertohttp://purl.org/coar/access_right/c_abf2Ellipse-based Principal Component Analysis for Self-intersecting Curve Reconstruction from Noisy Point Setsinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1CURVAS PLANASCOLECTORES (INGENIERÍA)TOPOLOGÍAVARIEDADES (MATEMÁTICAS)CORRELACIÓN (ESTADÍSTICA)ANÁLISIS ESTOCÁSTICOFUNCIONES ELÍPTICASCurves, planeTopologyManifolds (Mathematics)Correlation (statistics)Stochastic analysisFunctions, ellipticCurvesplaneTopologyManifolds (Mathematics)Correlation (statistics)Stochastic analysisFunctionsellipticReconstrucción superficialNube de puntosUniversidad EAFIT. Departamento de Ingeniería MecánicaRuíz, O.Vanegas, C.Cadavid, C.Laboratorio CAD/CAM/CAEThe Visual Computer, Collection: Computer ScienceThe Visual Computer273211226ORIGINALellipse-based_principal_component_analysis_abstract_springer.pdfellipse-based_principal_component_analysis_abstract_springer.pdfAbstractapplication/pdf434611https://repository.eafit.edu.co/bitstreams/ed051b32-3399-4237-ac4b-d9b9f0c90c7b/download27c57ee2e2abdddeac12e4cf673df8deMD52ellipse-based_principal_component_analysis_incomplete.pdfellipse-based_principal_component_analysis_incomplete.pdfVersión incompletaapplication/pdf2769352https://repository.eafit.edu.co/bitstreams/acae92ca-193d-416a-8b1a-6eeef69707ea/downloada2aade6429170950bac1f705e1bf6574MD53s00371-010-0527-x.pdfs00371-010-0527-x.pdfapplication/pdf3662681https://repository.eafit.edu.co/bitstreams/9b3bfd7b-1b8c-44e1-bb04-bce5dd42d2a6/downloadded7104fc34db6ecdf18ea5d6094bcf9MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/74cbcf4b-8e6c-43ea-8a09-d0904fa64050/download76025f86b095439b7ac65b367055d40cMD5110784/9681oai:repository.eafit.edu.co:10784/96812022-11-08 11:36:09.82open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |