A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation
The Derrida-Lebowitz-Speer-Spohn (DLSS) equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization for...
- Autores:
-
Ruiz Vera, Jorge Mauricio
Mantilla Prada, Ignacio
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14412
- Acceso en línea:
- http://hdl.handle.net/10784/14412
- Palabra clave:
- Finite Elements
Nonlinear Evolution Equations
Semiconductors
Elementos Finitos
Ecuaciones De Evolución No Lineal
Semiconductores
- Rights
- License
- Copyright (c) 2013 Jorge Mauricio Ruiz Vera, Ignacio Mantilla Prada
id |
REPOEAFIT2_370e9f7fe4ab1db1ddb3eb0c9874ba23 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/14412 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2013-03-222019-11-22T17:02:39Z2013-03-222019-11-22T17:02:39Z2256-43141794-9165http://hdl.handle.net/10784/1441210.17230/ingciecia.9.17.5The Derrida-Lebowitz-Speer-Spohn (DLSS) equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization for a coupled-equation approach to the DLSS equation. Using the available information about the physical phenomena, we are able to set the corresponding boundary conditions for the coupled system. We prove existence of a global in time discrete solution by fixed point argument. Numerical results illustrate the quantum character of the equation. Finally a test of order of convergence of the proposed discretization scheme is presented.La ecuación de Derrida-Lebowitz-Speer-Spohn (DLSS) es un cuarto orden en la ecuación de evolución no lineal del espacio. Esta ecuación surge en el estudio de las fluctuaciones de la interfaz en los sistemas de espín y el modelado cuántico de semiconductores. En este artículo, presentamos una discrtización positiva de elementos finitos de preservación para un enfoque de ecuaciones acopladas a la ecuación DLSS. Usando la información disponible sobre los fenómenos físicos, podemos establecer las condiciones de contorno correspondientes para el sistema acoplado. Probamos la existencia de una solución discreta global en el tiempo mediante un argumento de punto fijo. Los resultados numéricos ilustran el carácter cuántico de la ecuación. Finalmente se presenta una prueba de orden de convergencia del esquema de discretización propuesto.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1737http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1737Copyright (c) 2013 Jorge Mauricio Ruiz Vera, Ignacio Mantilla PradaAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 9, No 17 (2013)A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equationUn esquema de elementos finitos completamente discreto para la ecuación de Derrida-Lebowitz-Speer-Spohnarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Finite ElementsNonlinear Evolution EquationsSemiconductorsElementos FinitosEcuaciones De Evolución No LinealSemiconductoresRuiz Vera, Jorge MauricioMantilla Prada, IgnacioUniversidad Nacional de ColombiaIngeniería y Ciencia91797110ing.cienc.ORIGINALdocument (7).pdfdocument (7).pdfTexto completo PDFapplication/pdf755287https://repository.eafit.edu.co/bitstreams/b5e32b61-4428-4862-95ec-2c3853803085/downloadf7bd1c68b1d8dea253b013916fe62fa9MD51THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/1055f8a4-c664-4eee-9fc0-bead79444a9a/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5210784/14412oai:repository.eafit.edu.co:10784/144122020-02-16 11:38:39.674open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation |
dc.title.spa.fl_str_mv |
Un esquema de elementos finitos completamente discreto para la ecuación de Derrida-Lebowitz-Speer-Spohn |
title |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation |
spellingShingle |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation Finite Elements Nonlinear Evolution Equations Semiconductors Elementos Finitos Ecuaciones De Evolución No Lineal Semiconductores |
title_short |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation |
title_full |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation |
title_fullStr |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation |
title_full_unstemmed |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation |
title_sort |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation |
dc.creator.fl_str_mv |
Ruiz Vera, Jorge Mauricio Mantilla Prada, Ignacio |
dc.contributor.author.spa.fl_str_mv |
Ruiz Vera, Jorge Mauricio Mantilla Prada, Ignacio |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.subject.keyword.eng.fl_str_mv |
Finite Elements Nonlinear Evolution Equations Semiconductors |
topic |
Finite Elements Nonlinear Evolution Equations Semiconductors Elementos Finitos Ecuaciones De Evolución No Lineal Semiconductores |
dc.subject.keyword.spa.fl_str_mv |
Elementos Finitos Ecuaciones De Evolución No Lineal Semiconductores |
description |
The Derrida-Lebowitz-Speer-Spohn (DLSS) equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization for a coupled-equation approach to the DLSS equation. Using the available information about the physical phenomena, we are able to set the corresponding boundary conditions for the coupled system. We prove existence of a global in time discrete solution by fixed point argument. Numerical results illustrate the quantum character of the equation. Finally a test of order of convergence of the proposed discretization scheme is presented. |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013-03-22 |
dc.date.available.none.fl_str_mv |
2019-11-22T17:02:39Z |
dc.date.accessioned.none.fl_str_mv |
2019-11-22T17:02:39Z |
dc.date.none.fl_str_mv |
2013-03-22 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/14412 |
dc.identifier.doi.none.fl_str_mv |
10.17230/ingciecia.9.17.5 |
identifier_str_mv |
2256-4314 1794-9165 10.17230/ingciecia.9.17.5 |
url |
http://hdl.handle.net/10784/14412 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1737 |
dc.relation.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1737 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2013 Jorge Mauricio Ruiz Vera, Ignacio Mantilla Prada |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright (c) 2013 Jorge Mauricio Ruiz Vera, Ignacio Mantilla Prada Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia; Vol 9, No 17 (2013) |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/b5e32b61-4428-4862-95ec-2c3853803085/download https://repository.eafit.edu.co/bitstreams/1055f8a4-c664-4eee-9fc0-bead79444a9a/download |
bitstream.checksum.fl_str_mv |
f7bd1c68b1d8dea253b013916fe62fa9 da9b21a5c7e00c7f1127cef8e97035e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110581368553472 |