A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation

The Derrida-Lebowitz-Speer-Spohn (DLSS) equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization for...

Full description

Autores:
Ruiz Vera, Jorge Mauricio
Mantilla Prada, Ignacio
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14412
Acceso en línea:
http://hdl.handle.net/10784/14412
Palabra clave:
Finite Elements
Nonlinear Evolution Equations
Semiconductors
Elementos Finitos
Ecuaciones De Evolución No Lineal
Semiconductores
Rights
License
Copyright (c) 2013 Jorge Mauricio Ruiz Vera, Ignacio Mantilla Prada
Description
Summary:The Derrida-Lebowitz-Speer-Spohn (DLSS) equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization for a coupled-equation approach to the DLSS equation. Using the available information about the physical phenomena, we are able to set the corresponding boundary conditions for the coupled system. We prove existence of a global in time discrete solution by fixed point argument. Numerical results illustrate the quantum character of the equation. Finally a test of order of convergence of the proposed discretization scheme is presented.