Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles

This article describes the implementation of a novel method for detection and continuation of bifurcations in non- smooth complex dynamic systems -- The method is an alternative to existing ones for the follow-up of associated phe- nomena, precisely in the circumstances in which the traditional ones...

Full description

Autores:
Arango, Iván
Pineda, Fabio
Ruíz, Óscar
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/9673
Acceso en línea:
http://hdl.handle.net/10784/9673
Palabra clave:
PROCESOS DE BIFURCACIÓN
TOPOLOGÍA
ANÁLISIS DE SISTEMAS
SISTEMAS DINÁMICOS DIFERENCIALES
DISCONTINUIDAD
Branching processes
Topology
System analysis
Differentiable dynamical systems
Discontinuity
Branching processes
Topology
System analysis
Differentiable dynamical systems
Discontinuity
Rights
License
Acceso abierto
id REPOEAFIT2_34e63d8194d9032ae43db4b1ab3481dd
oai_identifier_str oai:repository.eafit.edu.co:10784/9673
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles
title Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles
spellingShingle Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles
PROCESOS DE BIFURCACIÓN
TOPOLOGÍA
ANÁLISIS DE SISTEMAS
SISTEMAS DINÁMICOS DIFERENCIALES
DISCONTINUIDAD
Branching processes
Topology
System analysis
Differentiable dynamical systems
Discontinuity
Branching processes
Topology
System analysis
Differentiable dynamical systems
Discontinuity
title_short Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles
title_full Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles
title_fullStr Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles
title_full_unstemmed Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles
title_sort Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles
dc.creator.fl_str_mv Arango, Iván
Pineda, Fabio
Ruíz, Óscar
dc.contributor.department.spa.fl_str_mv Universidad EAFIT. Departamento de Ingeniería Mecánica
dc.contributor.author.none.fl_str_mv Arango, Iván
Pineda, Fabio
Ruíz, Óscar
dc.contributor.researchgroup.spa.fl_str_mv Laboratorio CAD/CAM/CAE
dc.subject.lemb.spa.fl_str_mv PROCESOS DE BIFURCACIÓN
TOPOLOGÍA
ANÁLISIS DE SISTEMAS
SISTEMAS DINÁMICOS DIFERENCIALES
DISCONTINUIDAD
topic PROCESOS DE BIFURCACIÓN
TOPOLOGÍA
ANÁLISIS DE SISTEMAS
SISTEMAS DINÁMICOS DIFERENCIALES
DISCONTINUIDAD
Branching processes
Topology
System analysis
Differentiable dynamical systems
Discontinuity
Branching processes
Topology
System analysis
Differentiable dynamical systems
Discontinuity
dc.subject.keyword.spa.fl_str_mv Branching processes
Topology
System analysis
Differentiable dynamical systems
Discontinuity
dc.subject.keyword.eng.fl_str_mv Branching processes
Topology
System analysis
Differentiable dynamical systems
Discontinuity
description This article describes the implementation of a novel method for detection and continuation of bifurcations in non- smooth complex dynamic systems -- The method is an alternative to existing ones for the follow-up of associated phe- nomena, precisely in the circumstances in which the traditional ones have limitations (simultaneous impact, Filippov and first derivative discontinuities and multiple discontinuous boundaries) -- The topology of cycles in non-smooth sys- tems is determined by a group of ordered segments and points of different regions and their boundaries -- In this article, we compare the limit cycles of non-smooth systems against the sequences of elements, in order to find patterns -- To achieve this goal, a method was used, which characterizes and records the elements comprising the cycles in the order that they appear during the integration process -- The characterization discriminates: a) types of points and segments; b) direction of sliding segments; and c) regions or discontinuity boundaries to which each element belongs -- When a change takes place in the value of a parameter of a system, our comparison method is an alternative to determine topo- logical changes and hence bifurcations and associated phenomena -- This comparison has been tested in systems with discontinuities of three types: 1) impact; 2) Filippov and 3) first derivative discontinuities -- By coding well-known cy- cles as sequences of elements, an initial comparison database was built -- Our comparison method offers a convenient approach for large systems with more than two regions and more than two sliding segments
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-09
dc.date.available.none.fl_str_mv 2016-11-18T22:04:36Z
dc.date.accessioned.none.fl_str_mv 2016-11-18T22:04:36Z
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2161-1203
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/9673
dc.identifier.doi.none.fl_str_mv 10.4236/ajcm.2013.33032
identifier_str_mv 2161-1203
10.4236/ajcm.2013.33032
url http://hdl.handle.net/10784/9673
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv American Journal of Computational Mathematics, Volume 3, Issue 3, pp 220-230
dc.relation.uri.none.fl_str_mv http://www.scirp.org/journal/PaperInformation.aspx?PaperID=36085
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Scientific Research Publishing
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/a464de86-b5d3-4c7a-ada0-e804b2ab4c67/download
https://repository.eafit.edu.co/bitstreams/dacec73a-d1bb-4312-8a2c-c8f574eeed6a/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
f84a05ae96543c1744131bd73f72eb6c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110615113826304
spelling 2016-11-18T22:04:36Z2013-092016-11-18T22:04:36Z2161-1203http://hdl.handle.net/10784/967310.4236/ajcm.2013.33032This article describes the implementation of a novel method for detection and continuation of bifurcations in non- smooth complex dynamic systems -- The method is an alternative to existing ones for the follow-up of associated phe- nomena, precisely in the circumstances in which the traditional ones have limitations (simultaneous impact, Filippov and first derivative discontinuities and multiple discontinuous boundaries) -- The topology of cycles in non-smooth sys- tems is determined by a group of ordered segments and points of different regions and their boundaries -- In this article, we compare the limit cycles of non-smooth systems against the sequences of elements, in order to find patterns -- To achieve this goal, a method was used, which characterizes and records the elements comprising the cycles in the order that they appear during the integration process -- The characterization discriminates: a) types of points and segments; b) direction of sliding segments; and c) regions or discontinuity boundaries to which each element belongs -- When a change takes place in the value of a parameter of a system, our comparison method is an alternative to determine topo- logical changes and hence bifurcations and associated phenomena -- This comparison has been tested in systems with discontinuities of three types: 1) impact; 2) Filippov and 3) first derivative discontinuities -- By coding well-known cy- cles as sequences of elements, an initial comparison database was built -- Our comparison method offers a convenient approach for large systems with more than two regions and more than two sliding segmentsapplication/pdfengScientific Research PublishingAmerican Journal of Computational Mathematics, Volume 3, Issue 3, pp 220-230http://www.scirp.org/journal/PaperInformation.aspx?PaperID=36085Acceso abiertohttp://purl.org/coar/access_right/c_abf2Bifurcations and Sequences of Elements in Non-Smooth Systems Cyclesinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1PROCESOS DE BIFURCACIÓNTOPOLOGÍAANÁLISIS DE SISTEMASSISTEMAS DINÁMICOS DIFERENCIALESDISCONTINUIDADBranching processesTopologySystem analysisDifferentiable dynamical systemsDiscontinuityBranching processesTopologySystem analysisDifferentiable dynamical systemsDiscontinuityUniversidad EAFIT. Departamento de Ingeniería MecánicaArango, IvánPineda, FabioRuíz, ÓscarLaboratorio CAD/CAM/CAEAmerican Journal of Computational MathematicsAmerican Journal of Computational Mathematics33220230AJCMLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/a464de86-b5d3-4c7a-ada0-e804b2ab4c67/download76025f86b095439b7ac65b367055d40cMD51ORIGINALBifurcations-and-Sequences.pdfBifurcations-and-Sequences.pdfOpenAccess versionapplication/pdf1191045https://repository.eafit.edu.co/bitstreams/dacec73a-d1bb-4312-8a2c-c8f574eeed6a/downloadf84a05ae96543c1744131bd73f72eb6cMD5210784/9673oai:repository.eafit.edu.co:10784/96732021-09-03 15:43:43.752open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK