Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles
This article describes the implementation of a novel method for detection and continuation of bifurcations in non- smooth complex dynamic systems -- The method is an alternative to existing ones for the follow-up of associated phe- nomena, precisely in the circumstances in which the traditional ones...
- Autores:
-
Arango, Iván
Pineda, Fabio
Ruíz, Óscar
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/9673
- Acceso en línea:
- http://hdl.handle.net/10784/9673
- Palabra clave:
- PROCESOS DE BIFURCACIÓN
TOPOLOGÍA
ANÁLISIS DE SISTEMAS
SISTEMAS DINÁMICOS DIFERENCIALES
DISCONTINUIDAD
Branching processes
Topology
System analysis
Differentiable dynamical systems
Discontinuity
Branching processes
Topology
System analysis
Differentiable dynamical systems
Discontinuity
- Rights
- License
- Acceso abierto
Summary: | This article describes the implementation of a novel method for detection and continuation of bifurcations in non- smooth complex dynamic systems -- The method is an alternative to existing ones for the follow-up of associated phe- nomena, precisely in the circumstances in which the traditional ones have limitations (simultaneous impact, Filippov and first derivative discontinuities and multiple discontinuous boundaries) -- The topology of cycles in non-smooth sys- tems is determined by a group of ordered segments and points of different regions and their boundaries -- In this article, we compare the limit cycles of non-smooth systems against the sequences of elements, in order to find patterns -- To achieve this goal, a method was used, which characterizes and records the elements comprising the cycles in the order that they appear during the integration process -- The characterization discriminates: a) types of points and segments; b) direction of sliding segments; and c) regions or discontinuity boundaries to which each element belongs -- When a change takes place in the value of a parameter of a system, our comparison method is an alternative to determine topo- logical changes and hence bifurcations and associated phenomena -- This comparison has been tested in systems with discontinuities of three types: 1) impact; 2) Filippov and 3) first derivative discontinuities -- By coding well-known cy- cles as sequences of elements, an initial comparison database was built -- Our comparison method offers a convenient approach for large systems with more than two regions and more than two sliding segments |
---|