Symmetry and Reversibility Properties for Quantum Algebras and Skew Poincaré-Birkhoff-Witt Extensions

Our aim in this paper is to investigate symmetry and reversibility properties for quantum algebras and skew PBW extensions. Under certain conditions we prove that these properties transfer from a ring of coefficients to a quantum algebra or skew PBW extension over this ring. In this way we generaliz...

Full description

Autores:
Reyes, Armando
Jaramillo, Julio
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/13190
Acceso en línea:
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/5105
http://hdl.handle.net/10784/13190
Palabra clave:
Symmetry
Reversibility
Quantum algebra
Skew Poincaré-Birkhoff-Witt extension
Simetría
Reversibilidad
Álgebra cuántica
Extensión torcida de Poincaré-Birkhoff-Witt
Rights
License
Copyright (c) 2018 Armando Reyes, Dr., Julio Jaramillo
Description
Summary:Our aim in this paper is to investigate symmetry and reversibility properties for quantum algebras and skew PBW extensions. Under certain conditions we prove that these properties transfer from a ring of coefficients to a quantum algebra or skew PBW extension over this ring. In this way we generalize several results established in the literature and consider algebras which have not been studied before. We illustrate our results with remarkable examples of theoretical physics.