Quantifying slumness with remote sensing data

The presence of slums in a city is an indicator of poverty and its proper delimitation is a matter of interest for researchers and policy makers. Socio-economic data from surveys and censuses are the primary source of information to identify and quantify slumness within a city or a town. One problem...

Full description

Autores:
Duque, Juan C.
Patino, Jorge E.
Ruiz, Luis A.
Pardo-Pascual, Josep E.
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/1050
Acceso en línea:
http://hdl.handle.net/10784/1050
Palabra clave:
Regional Science
Remote Sensing
Slum
GEOBIA
Rights
License
Acceso abierto
id REPOEAFIT2_2da87ce5bbd060148b495cfabecd62a3
oai_identifier_str oai:repository.eafit.edu.co:10784/1050
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Quantifying slumness with remote sensing data
title Quantifying slumness with remote sensing data
spellingShingle Quantifying slumness with remote sensing data
Regional Science
Remote Sensing
Slum
GEOBIA
title_short Quantifying slumness with remote sensing data
title_full Quantifying slumness with remote sensing data
title_fullStr Quantifying slumness with remote sensing data
title_full_unstemmed Quantifying slumness with remote sensing data
title_sort Quantifying slumness with remote sensing data
dc.creator.fl_str_mv Duque, Juan C.
Patino, Jorge E.
Ruiz, Luis A.
Pardo-Pascual, Josep E.
dc.contributor.author.none.fl_str_mv Duque, Juan C.
Patino, Jorge E.
Ruiz, Luis A.
Pardo-Pascual, Josep E.
dc.subject.keyword.spa.fl_str_mv Regional Science
Remote Sensing
Slum
GEOBIA
topic Regional Science
Remote Sensing
Slum
GEOBIA
description The presence of slums in a city is an indicator of poverty and its proper delimitation is a matter of interest for researchers and policy makers. Socio-economic data from surveys and censuses are the primary source of information to identify and quantify slumness within a city or a town. One problem of using survey data for quantifying slumness is that this type of data is usually collected every ten years and is an expensive and time consuming process. Based on the premise that the physical appearance of an urban settlement is a reflection of the society that created it and on the assumption that people living in urban areas with similar physical housing conditions will have similar social and demographic characteristics (Jain, 2008; Taubenb¨ock et al., 2009b); this paper uses data from Medellin City, Colombia, to estimate slum index using solely remote sensing data from an orthorectified, pan-sharpened, natural color Quickbird scene. For Medellin city, the percentage of clay roofs cover and the mean swimming pool density at the analytical region level can explain up to 59% of the variability in the slum index. Structure and texture measures are useful to characterize the differences in the homogeneity of the spatial pattern of the urban layout and they improve the explanatory power of the statistical models when taken into account. When no other information is used, they can explain up to 30% of the variability of the slum index. The results of this research are encouraging and many researchers, urban planners and policy makers could benefit from this rapid and low cost approach to characterize the intra-urban variations of slumness in cities with sparse data or no data at all.
publishDate 2013
dc.date.available.none.fl_str_mv 2013-08-08T18:05:59Z
dc.date.issued.none.fl_str_mv 2013-08-08
dc.date.accessioned.none.fl_str_mv 2013-08-08T18:05:59Z
dc.type.eng.fl_str_mv workingPaper
info:eu-repo/semantics/workingPaper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.local.spa.fl_str_mv Documento de trabajo de investigación
dc.type.hasVersion.eng.fl_str_mv draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/1050
dc.identifier.jel.none.fl_str_mv C8
R14
url http://hdl.handle.net/10784/1050
identifier_str_mv C8
R14
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.department.spa.fl_str_mv Escuela de Economía y Finanzas
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/115d78a1-2c58-4514-a6a5-9f40ac242016/download
https://repository.eafit.edu.co/bitstreams/25a97475-f0f8-4b6b-8e8a-8fb2408bbcd2/download
bitstream.checksum.fl_str_mv 8b219a443e1ce4f02d4ded14ddd91867
4cc960a42e07fca3808fbd6b90ab2a1f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110468547018752
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2013-08-08T18:05:59Z2013-08-082013-08-08T18:05:59Zhttp://hdl.handle.net/10784/1050C8R14The presence of slums in a city is an indicator of poverty and its proper delimitation is a matter of interest for researchers and policy makers. Socio-economic data from surveys and censuses are the primary source of information to identify and quantify slumness within a city or a town. One problem of using survey data for quantifying slumness is that this type of data is usually collected every ten years and is an expensive and time consuming process. Based on the premise that the physical appearance of an urban settlement is a reflection of the society that created it and on the assumption that people living in urban areas with similar physical housing conditions will have similar social and demographic characteristics (Jain, 2008; Taubenb¨ock et al., 2009b); this paper uses data from Medellin City, Colombia, to estimate slum index using solely remote sensing data from an orthorectified, pan-sharpened, natural color Quickbird scene. For Medellin city, the percentage of clay roofs cover and the mean swimming pool density at the analytical region level can explain up to 59% of the variability in the slum index. Structure and texture measures are useful to characterize the differences in the homogeneity of the spatial pattern of the urban layout and they improve the explanatory power of the statistical models when taken into account. When no other information is used, they can explain up to 30% of the variability of the slum index. The results of this research are encouraging and many researchers, urban planners and policy makers could benefit from this rapid and low cost approach to characterize the intra-urban variations of slumness in cities with sparse data or no data at all.engUniversidad EAFITEscuela de Economía y FinanzasQuantifying slumness with remote sensing dataworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Regional ScienceRemote SensingSlumGEOBIADuque, Juan C.Patino, Jorge E.Ruiz, Luis A.Pardo-Pascual, Josep E.jduquec1@eafit.edu.coORIGINAL2013_23_Juan_C_Duque.pdf2013_23_Juan_C_Duque.pdfapplication/pdf16781734https://repository.eafit.edu.co/bitstreams/115d78a1-2c58-4514-a6a5-9f40ac242016/download8b219a443e1ce4f02d4ded14ddd91867MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8968https://repository.eafit.edu.co/bitstreams/25a97475-f0f8-4b6b-8e8a-8fb2408bbcd2/download4cc960a42e07fca3808fbd6b90ab2a1fMD5210784/1050oai:repository.eafit.edu.co:10784/10502024-03-05 14:06:26.13open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coQXV0b3JpemFjacOzbiBkZSBQdWJsaWNhY2nDs24gZGUgVmVyc2nDs24gZWxlY3Ryw7NuaWNhIGRlIGxhIFRlc2lzIG8gcHJveWVjdG8gZGUgR3JhZG8uClBvciBtZWRpbyBkZSBlc3RlIGVzY3JpdG8gYXV0b3Jpem8gZW4gZm9ybWEgZ3JhdHVpdGEgeSBwb3IgdGllbXBvIGluZGVmaW5pZG8gYSBsYSBVbml2ZXJzaWRhZCBFQUZJVCBwYXJhIHNpdHVhciBlbiBsYSBCaWJsaW90ZWNhIEx1aXMgRWNoYXZhcnLDrWEgVmlsbGVnYXMgdW4gZWplbXBsYXIgZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28uCgpJZ3VhbG1lbnRlIGF1dG9yaXpvIGVuIGZvcm1hIGdyYXR1aXRhIHkgcG9yIHRpZW1wbyBpbmRlZmluaWRvIGEgcHVibGljYXIgZW4gZm9ybWEgZWxlY3Ryw7NuaWNhIG8gZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vd3d3LmVhZml0LmVkdS5jby9iaWJsaW90ZWNhLiAKClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgeWEgc2VhIGxhIGJpYmxpb3RlY2EgbyBlbiBtZWRpbyBlbGVjdHLDs25pY28gcG9kcsOhIGNvcGlhciBhcGFydGVzIGRlbCB0ZXh0byBjaXRhbmRvIHNpZW1wcmUgbGEgZnVlbnRlcywgZXMgZGVjaXIgZWwgdGl0dWxvIGRlbCB0cmFiYWpvIHkgZWwgYXV0b3IuIEVzdGEgYXV0b3JpemFjacOzbiBubyBpbXBsaWNhIHJlbnVuY2lhIGEgbGEgZmFjdWx0YWQgcXVlIHRlbmdvIGRlIHB1YmxpY2FyIHRvdGFsIG8gcGFyY2lhbG1lbnRlCmxhIG9icmEuCgpMYSBVbml2ZXJzaWRhZCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgZGUgdGVyY2Vyb3MgcXVlIGludm9xdWVuIGF1dG9yw61hIGRlIGxhIG9icmEgcXVlIHByZXNlbnRvLgo=