Quantifying slumness with remote sensing data
The presence of slums in a city is an indicator of poverty and its proper delimitation is a matter of interest for researchers and policy makers. Socio-economic data from surveys and censuses are the primary source of information to identify and quantify slumness within a city or a town. One problem...
- Autores:
-
Duque, Juan C.
Patino, Jorge E.
Ruiz, Luis A.
Pardo-Pascual, Josep E.
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/1050
- Acceso en línea:
- http://hdl.handle.net/10784/1050
- Palabra clave:
- Regional Science
Remote Sensing
Slum
GEOBIA
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_2da87ce5bbd060148b495cfabecd62a3 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/1050 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Quantifying slumness with remote sensing data |
title |
Quantifying slumness with remote sensing data |
spellingShingle |
Quantifying slumness with remote sensing data Regional Science Remote Sensing Slum GEOBIA |
title_short |
Quantifying slumness with remote sensing data |
title_full |
Quantifying slumness with remote sensing data |
title_fullStr |
Quantifying slumness with remote sensing data |
title_full_unstemmed |
Quantifying slumness with remote sensing data |
title_sort |
Quantifying slumness with remote sensing data |
dc.creator.fl_str_mv |
Duque, Juan C. Patino, Jorge E. Ruiz, Luis A. Pardo-Pascual, Josep E. |
dc.contributor.author.none.fl_str_mv |
Duque, Juan C. Patino, Jorge E. Ruiz, Luis A. Pardo-Pascual, Josep E. |
dc.subject.keyword.spa.fl_str_mv |
Regional Science Remote Sensing Slum GEOBIA |
topic |
Regional Science Remote Sensing Slum GEOBIA |
description |
The presence of slums in a city is an indicator of poverty and its proper delimitation is a matter of interest for researchers and policy makers. Socio-economic data from surveys and censuses are the primary source of information to identify and quantify slumness within a city or a town. One problem of using survey data for quantifying slumness is that this type of data is usually collected every ten years and is an expensive and time consuming process. Based on the premise that the physical appearance of an urban settlement is a reflection of the society that created it and on the assumption that people living in urban areas with similar physical housing conditions will have similar social and demographic characteristics (Jain, 2008; Taubenb¨ock et al., 2009b); this paper uses data from Medellin City, Colombia, to estimate slum index using solely remote sensing data from an orthorectified, pan-sharpened, natural color Quickbird scene. For Medellin city, the percentage of clay roofs cover and the mean swimming pool density at the analytical region level can explain up to 59% of the variability in the slum index. Structure and texture measures are useful to characterize the differences in the homogeneity of the spatial pattern of the urban layout and they improve the explanatory power of the statistical models when taken into account. When no other information is used, they can explain up to 30% of the variability of the slum index. The results of this research are encouraging and many researchers, urban planners and policy makers could benefit from this rapid and low cost approach to characterize the intra-urban variations of slumness in cities with sparse data or no data at all. |
publishDate |
2013 |
dc.date.available.none.fl_str_mv |
2013-08-08T18:05:59Z |
dc.date.issued.none.fl_str_mv |
2013-08-08 |
dc.date.accessioned.none.fl_str_mv |
2013-08-08T18:05:59Z |
dc.type.eng.fl_str_mv |
workingPaper info:eu-repo/semantics/workingPaper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.local.spa.fl_str_mv |
Documento de trabajo de investigación |
dc.type.hasVersion.eng.fl_str_mv |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/1050 |
dc.identifier.jel.none.fl_str_mv |
C8 R14 |
url |
http://hdl.handle.net/10784/1050 |
identifier_str_mv |
C8 R14 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.department.spa.fl_str_mv |
Escuela de Economía y Finanzas |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/115d78a1-2c58-4514-a6a5-9f40ac242016/download https://repository.eafit.edu.co/bitstreams/25a97475-f0f8-4b6b-8e8a-8fb2408bbcd2/download |
bitstream.checksum.fl_str_mv |
8b219a443e1ce4f02d4ded14ddd91867 4cc960a42e07fca3808fbd6b90ab2a1f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110468547018752 |
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2013-08-08T18:05:59Z2013-08-082013-08-08T18:05:59Zhttp://hdl.handle.net/10784/1050C8R14The presence of slums in a city is an indicator of poverty and its proper delimitation is a matter of interest for researchers and policy makers. Socio-economic data from surveys and censuses are the primary source of information to identify and quantify slumness within a city or a town. One problem of using survey data for quantifying slumness is that this type of data is usually collected every ten years and is an expensive and time consuming process. Based on the premise that the physical appearance of an urban settlement is a reflection of the society that created it and on the assumption that people living in urban areas with similar physical housing conditions will have similar social and demographic characteristics (Jain, 2008; Taubenb¨ock et al., 2009b); this paper uses data from Medellin City, Colombia, to estimate slum index using solely remote sensing data from an orthorectified, pan-sharpened, natural color Quickbird scene. For Medellin city, the percentage of clay roofs cover and the mean swimming pool density at the analytical region level can explain up to 59% of the variability in the slum index. Structure and texture measures are useful to characterize the differences in the homogeneity of the spatial pattern of the urban layout and they improve the explanatory power of the statistical models when taken into account. When no other information is used, they can explain up to 30% of the variability of the slum index. The results of this research are encouraging and many researchers, urban planners and policy makers could benefit from this rapid and low cost approach to characterize the intra-urban variations of slumness in cities with sparse data or no data at all.engUniversidad EAFITEscuela de Economía y FinanzasQuantifying slumness with remote sensing dataworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Regional ScienceRemote SensingSlumGEOBIADuque, Juan C.Patino, Jorge E.Ruiz, Luis A.Pardo-Pascual, Josep E.jduquec1@eafit.edu.coORIGINAL2013_23_Juan_C_Duque.pdf2013_23_Juan_C_Duque.pdfapplication/pdf16781734https://repository.eafit.edu.co/bitstreams/115d78a1-2c58-4514-a6a5-9f40ac242016/download8b219a443e1ce4f02d4ded14ddd91867MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8968https://repository.eafit.edu.co/bitstreams/25a97475-f0f8-4b6b-8e8a-8fb2408bbcd2/download4cc960a42e07fca3808fbd6b90ab2a1fMD5210784/1050oai:repository.eafit.edu.co:10784/10502024-03-05 14:06:26.13open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coQXV0b3JpemFjacOzbiBkZSBQdWJsaWNhY2nDs24gZGUgVmVyc2nDs24gZWxlY3Ryw7NuaWNhIGRlIGxhIFRlc2lzIG8gcHJveWVjdG8gZGUgR3JhZG8uClBvciBtZWRpbyBkZSBlc3RlIGVzY3JpdG8gYXV0b3Jpem8gZW4gZm9ybWEgZ3JhdHVpdGEgeSBwb3IgdGllbXBvIGluZGVmaW5pZG8gYSBsYSBVbml2ZXJzaWRhZCBFQUZJVCBwYXJhIHNpdHVhciBlbiBsYSBCaWJsaW90ZWNhIEx1aXMgRWNoYXZhcnLDrWEgVmlsbGVnYXMgdW4gZWplbXBsYXIgZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28uCgpJZ3VhbG1lbnRlIGF1dG9yaXpvIGVuIGZvcm1hIGdyYXR1aXRhIHkgcG9yIHRpZW1wbyBpbmRlZmluaWRvIGEgcHVibGljYXIgZW4gZm9ybWEgZWxlY3Ryw7NuaWNhIG8gZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vd3d3LmVhZml0LmVkdS5jby9iaWJsaW90ZWNhLiAKClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgeWEgc2VhIGxhIGJpYmxpb3RlY2EgbyBlbiBtZWRpbyBlbGVjdHLDs25pY28gcG9kcsOhIGNvcGlhciBhcGFydGVzIGRlbCB0ZXh0byBjaXRhbmRvIHNpZW1wcmUgbGEgZnVlbnRlcywgZXMgZGVjaXIgZWwgdGl0dWxvIGRlbCB0cmFiYWpvIHkgZWwgYXV0b3IuIEVzdGEgYXV0b3JpemFjacOzbiBubyBpbXBsaWNhIHJlbnVuY2lhIGEgbGEgZmFjdWx0YWQgcXVlIHRlbmdvIGRlIHB1YmxpY2FyIHRvdGFsIG8gcGFyY2lhbG1lbnRlCmxhIG9icmEuCgpMYSBVbml2ZXJzaWRhZCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgZGUgdGVyY2Vyb3MgcXVlIGludm9xdWVuIGF1dG9yw61hIGRlIGxhIG9icmEgcXVlIHByZXNlbnRvLgo= |