Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model
This document uses the recent advances in the field of spatial econometrics to develop a semi-parametric regression model that allows the inclusion of non-linearities and the modeling of spatial heterogeneity through a two-dimensional function that depends on geographic coordinates. The methodology...
- Autores:
-
Tolaza-Delgado, Jurgen
Melo-Martínez, Oscar
Azcarate-Romero, Juan
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/31018
- Acceso en línea:
- http://hdl.handle.net/10784/31018
- Palabra clave:
- Hedonic models
spatial econometrics
housing price
semiparametric regression
Modelos hedónicos
Econometría espacial
Precios de vivienda
regresión semiparamétrica
- Rights
- License
- Copyright © 2021 Jurgen Toloza-Delgado, Oscar Melo-Martínez, Juan Azcarate-Romero
id |
REPOEAFIT2_2b7b3344d63d9c33c949ac040f3f956d |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/31018 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model |
dc.title.spa.fl_str_mv |
Determinantes del precio de la vivienda nueva en Bogotá para el año 2019: una aproximación a través de un modelo semiparamétrico de regresión espacial |
title |
Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model |
spellingShingle |
Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model Hedonic models spatial econometrics housing price semiparametric regression Modelos hedónicos Econometría espacial Precios de vivienda regresión semiparamétrica |
title_short |
Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model |
title_full |
Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model |
title_fullStr |
Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model |
title_full_unstemmed |
Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model |
title_sort |
Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model |
dc.creator.fl_str_mv |
Tolaza-Delgado, Jurgen Melo-Martínez, Oscar Azcarate-Romero, Juan |
dc.contributor.author.spa.fl_str_mv |
Tolaza-Delgado, Jurgen Melo-Martínez, Oscar Azcarate-Romero, Juan |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad Nacional de Colombia Universidad Nacional de Colombia Universidad Nacional de Colombia |
dc.subject.keyword.eng.fl_str_mv |
Hedonic models spatial econometrics housing price semiparametric regression |
topic |
Hedonic models spatial econometrics housing price semiparametric regression Modelos hedónicos Econometría espacial Precios de vivienda regresión semiparamétrica |
dc.subject.keyword.spa.fl_str_mv |
Modelos hedónicos Econometría espacial Precios de vivienda regresión semiparamétrica |
description |
This document uses the recent advances in the field of spatial econometrics to develop a semi-parametric regression model that allows the inclusion of non-linearities and the modeling of spatial heterogeneity through a two-dimensional function that depends on geographic coordinates. The methodology is applied in a hedonic model for the price of new housing in Bogotá where a remarkable fit is obtained, in terms of the mean square error and the R2. The empirical result shows that the housing delivery condition, stratum, and construction state affect the price in a linear way, while the area, and the distances to parks, roads and Transmilenio stations present non-linear results, additionaly, it was possible to model the spatial trend that represents the location on the value of the house where an increase is appreciated towards the northeast of the city. Thus, it is concluded that the estimated model allows the relationship between the explanatory variables and the dependent variable to be measured flexibly, establishing itself as a good alternative to understand the formation of prices in the real estate market. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-01 |
dc.date.available.none.fl_str_mv |
2022-03-23T16:59:33Z |
dc.date.accessioned.none.fl_str_mv |
2022-03-23T16:59:33Z |
dc.date.none.fl_str_mv |
2021-12-01 |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/article article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-9165 2256-4314 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/31018 |
identifier_str_mv |
1794-9165 2256-4314 |
url |
http://hdl.handle.net/10784/31018 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.isversionof.none.fl_str_mv |
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6772 |
dc.relation.uri.none.fl_str_mv |
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6772 |
dc.rights.eng.fl_str_mv |
Copyright © 2021 Jurgen Toloza-Delgado, Oscar Melo-Martínez, Juan Azcarate-Romero |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright © 2021 Jurgen Toloza-Delgado, Oscar Melo-Martínez, Juan Azcarate-Romero Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia, Vol. 17, Núm. 34 (2021) |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/6dfeb8d8-6627-4192-a666-59030179b4ac/download https://repository.eafit.edu.co/bitstreams/0649e8f1-9b68-41e9-a756-a0b51d569475/download https://repository.eafit.edu.co/bitstreams/1b9e2e2e-8fa2-4728-96fd-1b5238f19e1e/download |
bitstream.checksum.fl_str_mv |
8ca125ee6d369bc51cbc2e10686ba9be ba757a1ef86c46517c8c113778adc180 da9b21a5c7e00c7f1127cef8e97035e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102430078861312 |
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2021-12-012022-03-23T16:59:33Z2021-12-012022-03-23T16:59:33Z1794-91652256-4314http://hdl.handle.net/10784/31018This document uses the recent advances in the field of spatial econometrics to develop a semi-parametric regression model that allows the inclusion of non-linearities and the modeling of spatial heterogeneity through a two-dimensional function that depends on geographic coordinates. The methodology is applied in a hedonic model for the price of new housing in Bogotá where a remarkable fit is obtained, in terms of the mean square error and the R2. The empirical result shows that the housing delivery condition, stratum, and construction state affect the price in a linear way, while the area, and the distances to parks, roads and Transmilenio stations present non-linear results, additionaly, it was possible to model the spatial trend that represents the location on the value of the house where an increase is appreciated towards the northeast of the city. Thus, it is concluded that the estimated model allows the relationship between the explanatory variables and the dependent variable to be measured flexibly, establishing itself as a good alternative to understand the formation of prices in the real estate market.Este trabajo toma como punto de partida los recientes avances en el campo de la econometría espacial para desarrollar un modelo de regresión semiparamétrico que permite la inclusión de no linealidades y el modelamiento de la heterogeneidad espacial a través de una función bidimensional que depende de las coordenadas geográficas. La metodología se aplica en un modelo hedónico para el precio de la vivienda nueva en Bogotá donde se obtiene un ajuste destacable, en términos del error cuadrático medio y el R2. El resultado empírico muestra que el estrato, la condición de entrega y el estado constructivo afectan el precio de manera lineal, mientras que el área, y las distancias a parques, vías y estaciones de Transmilenio presentan resultados no lineales; además se logró modelar la tendencia espacial que representa la ubicación sobre el valor de la vivienda, evidenciando un incremento hacia el nororiente de la ciudad. Así, se concluye que el modelo estimado permite medir de manera flexible la relación entre las variables explicativas y la dependiente, estableciéndose como una buena alternativa para entender la formación de los precios en el mercado inmobiliario.application/pdfspaUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6772https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6772Copyright © 2021 Jurgen Toloza-Delgado, Oscar Melo-Martínez, Juan Azcarate-RomeroAcceso abiertohttp://purl.org/coar/access_right/c_abf2Ingeniería y Ciencia, Vol. 17, Núm. 34 (2021)Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression ModelDeterminantes del precio de la vivienda nueva en Bogotá para el año 2019: una aproximación a través de un modelo semiparamétrico de regresión espacialinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hedonic modelsspatial econometricshousing pricesemiparametric regressionModelos hedónicosEconometría espacialPrecios de viviendaregresión semiparamétricaTolaza-Delgado, Jurgene1fb08da-e4b6-4c8a-8ed6-03c654311f85-1Melo-Martínez, Oscarf48f8194-b0f6-41ab-9647-f346bc4bb266-1Azcarate-Romero, Juan695c0af2-293f-4e1e-a994-1f61a1a5ab7d-1Universidad Nacional de ColombiaUniversidad Nacional de ColombiaUniversidad Nacional de ColombiaIngeniería y Ciencia17342352ORIGINALDeterminants of New Housing Prices.pdfDeterminants of New Housing Prices.pdfTexto completo PDFapplication/pdf2255546https://repository.eafit.edu.co/bitstreams/6dfeb8d8-6627-4192-a666-59030179b4ac/download8ca125ee6d369bc51cbc2e10686ba9beMD51Determinants of New Housing Prices.htmlDeterminants of New Housing Prices.htmlTexto completo HTMLtext/html292https://repository.eafit.edu.co/bitstreams/0649e8f1-9b68-41e9-a756-a0b51d569475/downloadba757a1ef86c46517c8c113778adc180MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/1b9e2e2e-8fa2-4728-96fd-1b5238f19e1e/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5210784/31018oai:repository.eafit.edu.co:10784/310182024-12-04 11:49:54.374open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |