Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model

This document uses the recent advances in the field of spatial econometrics to develop a semi-parametric regression model that allows the inclusion of non-linearities and the modeling of spatial heterogeneity through a two-dimensional function that depends on geographic coordinates. The methodology...

Full description

Autores:
Tolaza-Delgado, Jurgen
Melo-Martínez, Oscar
Azcarate-Romero, Juan
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/31018
Acceso en línea:
http://hdl.handle.net/10784/31018
Palabra clave:
Hedonic models
spatial econometrics
housing price
semiparametric regression
Modelos hedónicos
Econometría espacial
Precios de vivienda
regresión semiparamétrica
Rights
License
Copyright © 2021 Jurgen Toloza-Delgado, Oscar Melo-Martínez, Juan Azcarate-Romero
id REPOEAFIT2_2b7b3344d63d9c33c949ac040f3f956d
oai_identifier_str oai:repository.eafit.edu.co:10784/31018
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model
dc.title.spa.fl_str_mv Determinantes del precio de la vivienda nueva en Bogotá para el año 2019: una aproximación a través de un modelo semiparamétrico de regresión espacial
title Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model
spellingShingle Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model
Hedonic models
spatial econometrics
housing price
semiparametric regression
Modelos hedónicos
Econometría espacial
Precios de vivienda
regresión semiparamétrica
title_short Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model
title_full Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model
title_fullStr Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model
title_full_unstemmed Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model
title_sort Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression Model
dc.creator.fl_str_mv Tolaza-Delgado, Jurgen
Melo-Martínez, Oscar
Azcarate-Romero, Juan
dc.contributor.author.spa.fl_str_mv Tolaza-Delgado, Jurgen
Melo-Martínez, Oscar
Azcarate-Romero, Juan
dc.contributor.affiliation.spa.fl_str_mv Universidad Nacional de Colombia
Universidad Nacional de Colombia
Universidad Nacional de Colombia
dc.subject.keyword.eng.fl_str_mv Hedonic models
spatial econometrics
housing price
semiparametric regression
topic Hedonic models
spatial econometrics
housing price
semiparametric regression
Modelos hedónicos
Econometría espacial
Precios de vivienda
regresión semiparamétrica
dc.subject.keyword.spa.fl_str_mv Modelos hedónicos
Econometría espacial
Precios de vivienda
regresión semiparamétrica
description This document uses the recent advances in the field of spatial econometrics to develop a semi-parametric regression model that allows the inclusion of non-linearities and the modeling of spatial heterogeneity through a two-dimensional function that depends on geographic coordinates. The methodology is applied in a hedonic model for the price of new housing in Bogotá where a remarkable fit is obtained, in terms of the mean square error and the R2. The empirical result shows that the housing delivery condition, stratum, and construction state affect the price in a linear way, while the area, and the distances to parks, roads and Transmilenio stations present non-linear results, additionaly, it was possible to model the spatial trend that represents the location on the value of  the house where an increase is appreciated towards the northeast of the city. Thus, it is concluded that the estimated model allows the relationship between the explanatory variables and the dependent variable to be measured flexibly, establishing itself as a good alternative to understand the formation of prices in the real estate market.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-01
dc.date.available.none.fl_str_mv 2022-03-23T16:59:33Z
dc.date.accessioned.none.fl_str_mv 2022-03-23T16:59:33Z
dc.date.none.fl_str_mv 2021-12-01
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-9165
2256-4314
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/31018
identifier_str_mv 1794-9165
2256-4314
url http://hdl.handle.net/10784/31018
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6772
dc.relation.uri.none.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6772
dc.rights.eng.fl_str_mv Copyright © 2021 Jurgen Toloza-Delgado, Oscar Melo-Martínez, Juan Azcarate-Romero
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright © 2021 Jurgen Toloza-Delgado, Oscar Melo-Martínez, Juan Azcarate-Romero
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia, Vol. 17, Núm. 34 (2021)
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/6dfeb8d8-6627-4192-a666-59030179b4ac/download
https://repository.eafit.edu.co/bitstreams/0649e8f1-9b68-41e9-a756-a0b51d569475/download
https://repository.eafit.edu.co/bitstreams/1b9e2e2e-8fa2-4728-96fd-1b5238f19e1e/download
bitstream.checksum.fl_str_mv 8ca125ee6d369bc51cbc2e10686ba9be
ba757a1ef86c46517c8c113778adc180
da9b21a5c7e00c7f1127cef8e97035e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1818102430078861312
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2021-12-012022-03-23T16:59:33Z2021-12-012022-03-23T16:59:33Z1794-91652256-4314http://hdl.handle.net/10784/31018This document uses the recent advances in the field of spatial econometrics to develop a semi-parametric regression model that allows the inclusion of non-linearities and the modeling of spatial heterogeneity through a two-dimensional function that depends on geographic coordinates. The methodology is applied in a hedonic model for the price of new housing in Bogotá where a remarkable fit is obtained, in terms of the mean square error and the R2. The empirical result shows that the housing delivery condition, stratum, and construction state affect the price in a linear way, while the area, and the distances to parks, roads and Transmilenio stations present non-linear results, additionaly, it was possible to model the spatial trend that represents the location on the value of  the house where an increase is appreciated towards the northeast of the city. Thus, it is concluded that the estimated model allows the relationship between the explanatory variables and the dependent variable to be measured flexibly, establishing itself as a good alternative to understand the formation of prices in the real estate market.Este trabajo toma como punto de partida los recientes avances en el campo de la econometría espacial para desarrollar un modelo de regresión semiparamétrico que permite la inclusión de no linealidades y el modelamiento de la heterogeneidad espacial a través de una función bidimensional que depende de las coordenadas geográficas. La metodología se aplica en un modelo hedónico para el precio de la vivienda nueva en Bogotá donde se obtiene un ajuste destacable, en términos del error cuadrático medio y el R2. El resultado empírico muestra que el estrato, la condición de entrega y el estado constructivo afectan el precio de manera lineal, mientras que el área, y las distancias a parques, vías y estaciones de Transmilenio presentan resultados no lineales; además se logró modelar la tendencia espacial que representa la ubicación sobre el valor de la vivienda, evidenciando un incremento hacia el nororiente de la ciudad. Así, se  concluye que el modelo estimado permite medir de manera flexible la relación entre las variables explicativas y la dependiente,  estableciéndose como una buena alternativa para entender la formación de los precios en el mercado inmobiliario.application/pdfspaUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6772https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6772Copyright © 2021 Jurgen Toloza-Delgado, Oscar Melo-Martínez, Juan Azcarate-RomeroAcceso abiertohttp://purl.org/coar/access_right/c_abf2Ingeniería y Ciencia, Vol. 17, Núm. 34 (2021)Determinants of New Housing Prices in Bogotá for 2019: an Approach Through a Semiparametric Spatial Regression ModelDeterminantes del precio de la vivienda nueva en Bogotá para el año 2019: una aproximación a través de un modelo semiparamétrico de regresión espacialinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hedonic modelsspatial econometricshousing pricesemiparametric regressionModelos hedónicosEconometría espacialPrecios de viviendaregresión semiparamétricaTolaza-Delgado, Jurgene1fb08da-e4b6-4c8a-8ed6-03c654311f85-1Melo-Martínez, Oscarf48f8194-b0f6-41ab-9647-f346bc4bb266-1Azcarate-Romero, Juan695c0af2-293f-4e1e-a994-1f61a1a5ab7d-1Universidad Nacional de ColombiaUniversidad Nacional de ColombiaUniversidad Nacional de ColombiaIngeniería y Ciencia17342352ORIGINALDeterminants of New Housing Prices.pdfDeterminants of New Housing Prices.pdfTexto completo PDFapplication/pdf2255546https://repository.eafit.edu.co/bitstreams/6dfeb8d8-6627-4192-a666-59030179b4ac/download8ca125ee6d369bc51cbc2e10686ba9beMD51Determinants of New Housing Prices.htmlDeterminants of New Housing Prices.htmlTexto completo HTMLtext/html292https://repository.eafit.edu.co/bitstreams/0649e8f1-9b68-41e9-a756-a0b51d569475/downloadba757a1ef86c46517c8c113778adc180MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/1b9e2e2e-8fa2-4728-96fd-1b5238f19e1e/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5210784/31018oai:repository.eafit.edu.co:10784/310182024-12-04 11:49:54.374open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co