Symmetry and new solutions of the equation for vibrations of an elastic beam

In this article we study the "no Lie" symmetry of the beam equation, all linear differential symmetry operators are constructed, up to the third order. It is found that the problem of solving this equation is reduced to the search for solutions of two Kolmogorov equations. Several kinds of...

Full description

Autores:
Sukhomlin, Nykolay
Alvarez, José R.
Tipo de recurso:
Fecha de publicación:
2009
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/14509
Acceso en línea:
http://hdl.handle.net/10784/14509
Palabra clave:
Operators Of Symmetry
Symmetry And Cauchy Problem
Parallelism Between Equations
Ansatz Method
Operadores De Simetría
Simetría Y Problema De Cauchy
Paralelismo Entre Ecuaciones
Método Ansatz
Rights
License
Copyright (c) 2009 Nykolay Sukhomlin, José R. Alvarez
id REPOEAFIT2_2a446eb6f304e1340997d3d412d7dac1
oai_identifier_str oai:repository.eafit.edu.co:10784/14509
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2009-06-012019-11-22T19:06:22Z2009-06-012019-11-22T19:06:22Z2256-43141794-9165http://hdl.handle.net/10784/14509In this article we study the "no Lie" symmetry of the beam equation, all linear differential symmetry operators are constructed, up to the third order. It is found that the problem of solving this equation is reduced to the search for solutions of two Kolmogorov equations. Several kinds of solutions are cleared from the equation, particularly those that verify the initial areolar velocity conservation law and those that verify the initial elasticity conservation law. The equivalence between the Cauchy problem and the existence of a specific symmetry is illustrated. The striking parallelism that exists between the beam equation and the wave equation is found. Applying the "Ansatz method" builds a wide family of new exact solutions that particularly include those that describe the propagation of waves with damping. All the results of the article are new, the few known results in the literature are always mentioned.En este artículo se estudia la “no Lie” simetría de la ecuación de viga, se construyen todos los operadores de simetría diferenciales lineales, hasta tercer orden. Se constata que el problema de resolución de dicha ecuación se reduce a la búsqueda de soluciones de dos ecuaciones de Kolmogorov. Se despejan varias clases de soluciones de la ecuación, particularmente las que verifican la ley de conservación de la velocidad areolar inicial y las que verifican la ley de conservación de elasticidad inicial. Se ilustra la equivalencia entre el problema de Cauchy y la existencia de una simetría específica. Se encuentra el paralelismo sorprendente que existe entre la ecuación de viga y la ecuación de onda. Aplicando el “método Ansatz” se construye una amplia familia de nuevas soluciones exactas que incluye particularmente las que describen la propagación de ondas con amortiguamiento. Todos los resultados del artículo son nuevos, los pocos resultados conocidos en la literatura son siempre mencionados.application/pdfspaUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/466http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/466Copyright (c) 2009 Nykolay Sukhomlin, José R. AlvarezAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 5, No 9 (2009)Symmetry and new solutions of the equation for vibrations of an elastic beamSimetría y nuevas soluciones de la ecuación de vibraciones de una viga elásticaarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Operators Of SymmetrySymmetry And Cauchy ProblemParallelism Between EquationsAnsatz MethodOperadores De SimetríaSimetría Y Problema De CauchyParalelismo Entre EcuacionesMétodo AnsatzSukhomlin, NykolayAlvarez, José R.Universidad Autónoma de Santo DomingoUniversidad de Puerto RicoIngeniería y Ciencia592543ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/1c26b7a7-c027-460e-883a-f46211b70ca3/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL2.pdf2.pdfTexto completo PDFapplication/pdf216775https://repository.eafit.edu.co/bitstreams/b44a0604-f2b8-41f7-a7b8-a63d44c18468/download807b85e8afefa3d8c6b6430665974980MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html373https://repository.eafit.edu.co/bitstreams/d6d789f8-34ab-41a0-aa3f-3df70dc3e2a6/download7be2398a07c48e95e25a4327a857ef19MD5310784/14509oai:repository.eafit.edu.co:10784/145092020-03-02 22:58:51.579open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Symmetry and new solutions of the equation for vibrations of an elastic beam
dc.title.spa.fl_str_mv Simetría y nuevas soluciones de la ecuación de vibraciones de una viga elástica
title Symmetry and new solutions of the equation for vibrations of an elastic beam
spellingShingle Symmetry and new solutions of the equation for vibrations of an elastic beam
Operators Of Symmetry
Symmetry And Cauchy Problem
Parallelism Between Equations
Ansatz Method
Operadores De Simetría
Simetría Y Problema De Cauchy
Paralelismo Entre Ecuaciones
Método Ansatz
title_short Symmetry and new solutions of the equation for vibrations of an elastic beam
title_full Symmetry and new solutions of the equation for vibrations of an elastic beam
title_fullStr Symmetry and new solutions of the equation for vibrations of an elastic beam
title_full_unstemmed Symmetry and new solutions of the equation for vibrations of an elastic beam
title_sort Symmetry and new solutions of the equation for vibrations of an elastic beam
dc.creator.fl_str_mv Sukhomlin, Nykolay
Alvarez, José R.
dc.contributor.author.spa.fl_str_mv Sukhomlin, Nykolay
Alvarez, José R.
dc.contributor.affiliation.spa.fl_str_mv Universidad Autónoma de Santo Domingo
Universidad de Puerto Rico
dc.subject.keyword.eng.fl_str_mv Operators Of Symmetry
Symmetry And Cauchy Problem
Parallelism Between Equations
Ansatz Method
topic Operators Of Symmetry
Symmetry And Cauchy Problem
Parallelism Between Equations
Ansatz Method
Operadores De Simetría
Simetría Y Problema De Cauchy
Paralelismo Entre Ecuaciones
Método Ansatz
dc.subject.keyword.spa.fl_str_mv Operadores De Simetría
Simetría Y Problema De Cauchy
Paralelismo Entre Ecuaciones
Método Ansatz
description In this article we study the "no Lie" symmetry of the beam equation, all linear differential symmetry operators are constructed, up to the third order. It is found that the problem of solving this equation is reduced to the search for solutions of two Kolmogorov equations. Several kinds of solutions are cleared from the equation, particularly those that verify the initial areolar velocity conservation law and those that verify the initial elasticity conservation law. The equivalence between the Cauchy problem and the existence of a specific symmetry is illustrated. The striking parallelism that exists between the beam equation and the wave equation is found. Applying the "Ansatz method" builds a wide family of new exact solutions that particularly include those that describe the propagation of waves with damping. All the results of the article are new, the few known results in the literature are always mentioned.
publishDate 2009
dc.date.issued.none.fl_str_mv 2009-06-01
dc.date.available.none.fl_str_mv 2019-11-22T19:06:22Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T19:06:22Z
dc.date.none.fl_str_mv 2009-06-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14509
identifier_str_mv 2256-4314
1794-9165
url http://hdl.handle.net/10784/14509
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/466
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/466
dc.rights.eng.fl_str_mv Copyright (c) 2009 Nykolay Sukhomlin, José R. Alvarez
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2009 Nykolay Sukhomlin, José R. Alvarez
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 5, No 9 (2009)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/1c26b7a7-c027-460e-883a-f46211b70ca3/download
https://repository.eafit.edu.co/bitstreams/b44a0604-f2b8-41f7-a7b8-a63d44c18468/download
https://repository.eafit.edu.co/bitstreams/d6d789f8-34ab-41a0-aa3f-3df70dc3e2a6/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
807b85e8afefa3d8c6b6430665974980
7be2398a07c48e95e25a4327a857ef19
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110317871890432