Estimation of large domain Al foam permeability by Finite Difference methods
Classical methods to calculate permeability of porous media have been proposed mainly for high density (e.g. granular) materials -- These methods present shortcomings in high porosity, i.e. high permeability media (e.g. metallic foams) -- While for dense materials permeability seems to be a function...
- Autores:
-
Osorno, María
Steeb, Holger
Uribe, David
Ruíz, Óscar
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/9667
- Acceso en línea:
- http://hdl.handle.net/10784/9667
- Palabra clave:
- ECUACIONES DE NAVIER - STOKES
PROCESOS ESTOCÁSTICOS
MÉTODO DE ELEMENTOS FINITOS
TOMOGRAFÍA COMPUTARIZADA POR RAYOS X
POROSIDAD
PERMEABILIDAD
CÁLCULO NUMÉRICO
LEY DE DARCY
ANÁLISIS MATEMÁTICO
Navier-stokes equations
Stochastic processes
Finite element method
Tomography, X-ray computed
Porosity
Permeability
Numerical calculations
Darcy's law
Mathematical analysis
Navier-stokes equations
Stochastic processes
Finite element method
Tomography
X-ray computed
Porosity
Permeability
Numerical calculations
Darcy's law
Mathematical analysis
Modelado geométrico
Ecuación de Boltzmann
- Rights
- License
- Acceso cerrado
id |
REPOEAFIT2_297ace619cd5fe6ac38af727b6c73615 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/9667 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Estimation of large domain Al foam permeability by Finite Difference methods |
title |
Estimation of large domain Al foam permeability by Finite Difference methods |
spellingShingle |
Estimation of large domain Al foam permeability by Finite Difference methods ECUACIONES DE NAVIER - STOKES PROCESOS ESTOCÁSTICOS MÉTODO DE ELEMENTOS FINITOS TOMOGRAFÍA COMPUTARIZADA POR RAYOS X POROSIDAD PERMEABILIDAD CÁLCULO NUMÉRICO LEY DE DARCY ANÁLISIS MATEMÁTICO Navier-stokes equations Stochastic processes Finite element method Tomography, X-ray computed Porosity Permeability Numerical calculations Darcy's law Mathematical analysis Navier-stokes equations Stochastic processes Finite element method Tomography X-ray computed Porosity Permeability Numerical calculations Darcy's law Mathematical analysis Modelado geométrico Ecuación de Boltzmann |
title_short |
Estimation of large domain Al foam permeability by Finite Difference methods |
title_full |
Estimation of large domain Al foam permeability by Finite Difference methods |
title_fullStr |
Estimation of large domain Al foam permeability by Finite Difference methods |
title_full_unstemmed |
Estimation of large domain Al foam permeability by Finite Difference methods |
title_sort |
Estimation of large domain Al foam permeability by Finite Difference methods |
dc.creator.fl_str_mv |
Osorno, María Steeb, Holger Uribe, David Ruíz, Óscar |
dc.contributor.department.spa.fl_str_mv |
Universidad EAFIT. Departamento de Ingeniería Mecánica |
dc.contributor.author.none.fl_str_mv |
Osorno, María Steeb, Holger Uribe, David Ruíz, Óscar |
dc.contributor.researchgroup.spa.fl_str_mv |
Laboratorio CAD/CAM/CAE |
dc.subject.lemb.spa.fl_str_mv |
ECUACIONES DE NAVIER - STOKES PROCESOS ESTOCÁSTICOS MÉTODO DE ELEMENTOS FINITOS TOMOGRAFÍA COMPUTARIZADA POR RAYOS X POROSIDAD PERMEABILIDAD CÁLCULO NUMÉRICO LEY DE DARCY ANÁLISIS MATEMÁTICO |
topic |
ECUACIONES DE NAVIER - STOKES PROCESOS ESTOCÁSTICOS MÉTODO DE ELEMENTOS FINITOS TOMOGRAFÍA COMPUTARIZADA POR RAYOS X POROSIDAD PERMEABILIDAD CÁLCULO NUMÉRICO LEY DE DARCY ANÁLISIS MATEMÁTICO Navier-stokes equations Stochastic processes Finite element method Tomography, X-ray computed Porosity Permeability Numerical calculations Darcy's law Mathematical analysis Navier-stokes equations Stochastic processes Finite element method Tomography X-ray computed Porosity Permeability Numerical calculations Darcy's law Mathematical analysis Modelado geométrico Ecuación de Boltzmann |
dc.subject.keyword.spa.fl_str_mv |
Navier-stokes equations Stochastic processes Finite element method Tomography, X-ray computed Porosity Permeability Numerical calculations Darcy's law Mathematical analysis |
dc.subject.keyword.eng.fl_str_mv |
Navier-stokes equations Stochastic processes Finite element method Tomography X-ray computed Porosity Permeability Numerical calculations Darcy's law Mathematical analysis |
dc.subject.keyword..keywor.fl_str_mv |
Modelado geométrico Ecuación de Boltzmann |
description |
Classical methods to calculate permeability of porous media have been proposed mainly for high density (e.g. granular) materials -- These methods present shortcomings in high porosity, i.e. high permeability media (e.g. metallic foams) -- While for dense materials permeability seems to be a function of bulk properties and occupancy averaged over the volume, for highly porous materials these parameters fail to predict it -- Several authors have attacked the problem by solving the Navier-Stokes equations for the pressure and velocity of a liquid flowing through a small domain (Ωs) of aluminium foam and by comparing the numerical results with experimental values (prediction error approx. 9%) -- In this article, we present calculations for much larger domains (ΩL) using the Finite Difference (FD) method, solving also for the pressure and velocity of a viscous liquid flowing through the Packed Spheres scenario -- The ratio Vol(ΩL)/Vol(Ωs) is around 103 -- The comparison of our results with the Packed Spheres example yields a prediction error of 5% for the intrinsic permeability -- Additionally, numerical permeability calculations have been performed for Al foam samples -- Our geometric modelling of the porous domain stems from 3D X-ray tomography, yielding voxel information, which is particularly appropriate for FD -- Ongoing work concerns the reduction in computing times of the FD method, consideration of other materials and fluids, and comparison with experimental data |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013 |
dc.date.available.none.fl_str_mv |
2016-11-18T21:54:17Z |
dc.date.accessioned.none.fl_str_mv |
2016-11-18T21:54:17Z |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/article article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1617-7061 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/9667 |
dc.identifier.doi.none.fl_str_mv |
10.1002/pamm.201310119 |
identifier_str_mv |
1617-7061 10.1002/pamm.201310119 |
url |
http://hdl.handle.net/10784/9667 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
PAMM, Volume 13, Issue 1, pp 247-248 |
dc.relation.uri.none.fl_str_mv |
http://onlinelibrary.wiley.com/doi/10.1002/pamm.201310119/abstract |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.local.spa.fl_str_mv |
Acceso cerrado |
rights_invalid_str_mv |
Acceso cerrado http://purl.org/coar/access_right/c_14cb |
dc.format.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
WILEY-VCH Verlag |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/7081d0dd-e376-4c62-adf9-fef875e75b5d/download https://repository.eafit.edu.co/bitstreams/03fa4f57-cbfc-48bd-882f-e0092bbf373b/download |
bitstream.checksum.fl_str_mv |
683d40117a6761797df56cdb2ec04e75 76025f86b095439b7ac65b367055d40c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110540782370816 |
spelling |
2016-11-18T21:54:17Z20132016-11-18T21:54:17Z1617-7061http://hdl.handle.net/10784/966710.1002/pamm.201310119Classical methods to calculate permeability of porous media have been proposed mainly for high density (e.g. granular) materials -- These methods present shortcomings in high porosity, i.e. high permeability media (e.g. metallic foams) -- While for dense materials permeability seems to be a function of bulk properties and occupancy averaged over the volume, for highly porous materials these parameters fail to predict it -- Several authors have attacked the problem by solving the Navier-Stokes equations for the pressure and velocity of a liquid flowing through a small domain (Ωs) of aluminium foam and by comparing the numerical results with experimental values (prediction error approx. 9%) -- In this article, we present calculations for much larger domains (ΩL) using the Finite Difference (FD) method, solving also for the pressure and velocity of a viscous liquid flowing through the Packed Spheres scenario -- The ratio Vol(ΩL)/Vol(Ωs) is around 103 -- The comparison of our results with the Packed Spheres example yields a prediction error of 5% for the intrinsic permeability -- Additionally, numerical permeability calculations have been performed for Al foam samples -- Our geometric modelling of the porous domain stems from 3D X-ray tomography, yielding voxel information, which is particularly appropriate for FD -- Ongoing work concerns the reduction in computing times of the FD method, consideration of other materials and fluids, and comparison with experimental dataapplication/pdfengWILEY-VCH VerlagPAMM, Volume 13, Issue 1, pp 247-248http://onlinelibrary.wiley.com/doi/10.1002/pamm.201310119/abstractAcceso cerradohttp://purl.org/coar/access_right/c_14cbEstimation of large domain Al foam permeability by Finite Difference methodsinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1ECUACIONES DE NAVIER - STOKESPROCESOS ESTOCÁSTICOSMÉTODO DE ELEMENTOS FINITOSTOMOGRAFÍA COMPUTARIZADA POR RAYOS XPOROSIDADPERMEABILIDADCÁLCULO NUMÉRICOLEY DE DARCYANÁLISIS MATEMÁTICONavier-stokes equationsStochastic processesFinite element methodTomography, X-ray computedPorosityPermeabilityNumerical calculationsDarcy's lawMathematical analysisNavier-stokes equationsStochastic processesFinite element methodTomographyX-ray computedPorosityPermeabilityNumerical calculationsDarcy's lawMathematical analysisModelado geométricoEcuación de BoltzmannUniversidad EAFIT. Departamento de Ingeniería MecánicaOsorno, MaríaSteeb, HolgerUribe, DavidRuíz, ÓscarLaboratorio CAD/CAM/CAEPAMMPAMM131247248ORIGINALEstimation-of-large.pdfEstimation-of-large.pdfWeb Page Printapplication/pdf182818https://repository.eafit.edu.co/bitstreams/7081d0dd-e376-4c62-adf9-fef875e75b5d/download683d40117a6761797df56cdb2ec04e75MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/03fa4f57-cbfc-48bd-882f-e0092bbf373b/download76025f86b095439b7ac65b367055d40cMD5110784/9667oai:repository.eafit.edu.co:10784/96672022-11-08 11:25:44.63open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK |