Duality in Multi-Objective Optimization Under Uncertainty
In this paper we extend to a multi-objective optimization with a interval-valued function and real valued constraints, the concepts of Wolfes duality elaborated on [1] and [2], for the interval-valued mono-objective case with real constraints or intervals-valued. First of all, being supported on the...
- Autores:
-
Puerta Yepes, María Eugenia
Gaviria, C.
Fernández Gutiérrez, Juan Pablo
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/4556
- Acceso en línea:
- http://hdl.handle.net/10784/4556
- Palabra clave:
- Primal and Dual Wolfe's problems
Weak and Strong Duality Theorems
H-diferentiability intervals
- Rights
- License
- Acceso restringido
id |
REPOEAFIT2_28626d5ef0f404e5173b4f03498ddf31 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/4556 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
2014-12-11T19:22:58Z2014-02-202014-12-11T19:22:58Zhttp://hdl.handle.net/10784/4556In this paper we extend to a multi-objective optimization with a interval-valued function and real valued constraints, the concepts of Wolfes duality elaborated on [1] and [2], for the interval-valued mono-objective case with real constraints or intervals-valued. First of all, being supported on the Wolfes duality theory valued set [3], we perform an extension to optimize a deterministic multi-objective function, and with real valued constraints of a proposal made by Wolfe [4] for a duality in a optimization with objective function and real valued constraints. The theorems 3.1 and 3.3 are theorems of duality in a weak and strong sense, respectively; i.e, they guarantee that all objective value of a dual problem are lesser than all the objective value of the primal problem, and, under some conditions, the furthest values of the primal and dual problem are the same. Secondly, being supported on [3] and, in the Wolfes duality for a deterministic multi-objective case, we developed Wolfes duality concepts for an optimization under uncertainty with a interval-valued function criteria with real valued constraints. Lem-mas 4.3, 4.4 and proposition 4.5 constitute a duality in a weak sense, and theorems 4.8 and 4.11 constitute a duality in a strong sense.engUniversidad EAFITGrupo de Investigación Análisis Funcional y AplicacionesUniversidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y AplicacionesDuality in Multi-Objective Optimization Under UncertaintyworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso restringidohttp://purl.org/coar/access_right/c_16ecPrimal and Dual Wolfe's problemsWeak and Strong Duality TheoremsH-diferentiability intervalsMaría E. Puerta (mpuerta@eafit.edu.co)Puerta Yepes, María Eugenia11c1f5ea-a0e5-4644-a063-1eedea3c897a-1Gaviria, C.da92f0a7-7d0d-407d-9b4d-5eb4d5561056-1Fernández Gutiérrez, Juan Pabloa2a5880d-3744-4fc3-bb3c-d05b52a252a5-1ORIGINALWolfeDuality (2).pdfWolfeDuality (2).pdfapplication/pdf290493https://repository.eafit.edu.co/bitstreams/429df5e8-376d-4454-9bff-60ec4f1a9454/download6d60c3a4471b63a848006d0c4fb621c7MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/7b11c2ba-bd39-4328-b5a6-6dfea2ed26f2/download76025f86b095439b7ac65b367055d40cMD5110784/4556oai:repository.eafit.edu.co:10784/45562024-12-04 11:50:04.977restrictedhttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.spa.fl_str_mv |
Duality in Multi-Objective Optimization Under Uncertainty |
title |
Duality in Multi-Objective Optimization Under Uncertainty |
spellingShingle |
Duality in Multi-Objective Optimization Under Uncertainty Primal and Dual Wolfe's problems Weak and Strong Duality Theorems H-diferentiability intervals |
title_short |
Duality in Multi-Objective Optimization Under Uncertainty |
title_full |
Duality in Multi-Objective Optimization Under Uncertainty |
title_fullStr |
Duality in Multi-Objective Optimization Under Uncertainty |
title_full_unstemmed |
Duality in Multi-Objective Optimization Under Uncertainty |
title_sort |
Duality in Multi-Objective Optimization Under Uncertainty |
dc.creator.fl_str_mv |
Puerta Yepes, María Eugenia Gaviria, C. Fernández Gutiérrez, Juan Pablo |
dc.contributor.eafitauthor.spa.fl_str_mv |
María E. Puerta (mpuerta@eafit.edu.co) |
dc.contributor.author.none.fl_str_mv |
Puerta Yepes, María Eugenia Gaviria, C. Fernández Gutiérrez, Juan Pablo |
dc.subject.keyword.spa.fl_str_mv |
Primal and Dual Wolfe's problems Weak and Strong Duality Theorems H-diferentiability intervals |
topic |
Primal and Dual Wolfe's problems Weak and Strong Duality Theorems H-diferentiability intervals |
description |
In this paper we extend to a multi-objective optimization with a interval-valued function and real valued constraints, the concepts of Wolfes duality elaborated on [1] and [2], for the interval-valued mono-objective case with real constraints or intervals-valued. First of all, being supported on the Wolfes duality theory valued set [3], we perform an extension to optimize a deterministic multi-objective function, and with real valued constraints of a proposal made by Wolfe [4] for a duality in a optimization with objective function and real valued constraints. The theorems 3.1 and 3.3 are theorems of duality in a weak and strong sense, respectively; i.e, they guarantee that all objective value of a dual problem are lesser than all the objective value of the primal problem, and, under some conditions, the furthest values of the primal and dual problem are the same. Secondly, being supported on [3] and, in the Wolfes duality for a deterministic multi-objective case, we developed Wolfes duality concepts for an optimization under uncertainty with a interval-valued function criteria with real valued constraints. Lem-mas 4.3, 4.4 and proposition 4.5 constitute a duality in a weak sense, and theorems 4.8 and 4.11 constitute a duality in a strong sense. |
publishDate |
2014 |
dc.date.available.none.fl_str_mv |
2014-12-11T19:22:58Z |
dc.date.issued.none.fl_str_mv |
2014-02-20 |
dc.date.accessioned.none.fl_str_mv |
2014-12-11T19:22:58Z |
dc.type.eng.fl_str_mv |
workingPaper |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.local.spa.fl_str_mv |
Documento de trabajo de investigación |
dc.type.hasVersion.spa.fl_str_mv |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/4556 |
url |
http://hdl.handle.net/10784/4556 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.local.spa.fl_str_mv |
Acceso restringido |
rights_invalid_str_mv |
Acceso restringido http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.program.spa.fl_str_mv |
Grupo de Investigación Análisis Funcional y Aplicaciones |
dc.publisher.department.spa.fl_str_mv |
Universidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y Aplicaciones |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/429df5e8-376d-4454-9bff-60ec4f1a9454/download https://repository.eafit.edu.co/bitstreams/7b11c2ba-bd39-4328-b5a6-6dfea2ed26f2/download |
bitstream.checksum.fl_str_mv |
6d60c3a4471b63a848006d0c4fb621c7 76025f86b095439b7ac65b367055d40c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102433302183936 |