Triangular mesh parameterization with trimmed surfaces
Given a 2manifold triangular mesh \(M \subset {\mathbb {R}}^3\), with border, a parameterization of \(M\) is a FACE or trimmed surface \(F=\{S,L_0,\ldots, L_m\}\) -- \(F\) is a connected subset or region of a parametric surface \(S\), bounded by a set of LOOPs \(L_0,\ldots ,L_m\) such that each \(L_...
- Autores:
-
Ruíz, Óscar E.
Mejía, Daniel
Cadavid, Carlos A.
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/9544
- Acceso en línea:
- http://hdl.handle.net/10784/9544
- Palabra clave:
- VARIEDADES (MATEMÁTICAS)
CUADRATURA DE GAUSS
ALGORITMOS
GENERACIÓN NUMÉRICA DE MALLAS (ANÁLISIS NUMÉRICO)
Manifolds (Mathematics)
Gaussian quadrature formulas
Algorithms
Numerical grid generation (Numerical analysis)
Manifolds (Mathematics)
Gaussian quadrature formulas
Algorithms
Numerical grid generation (Numerical analysis)
Superficies NURBS
Superficies B-Splines Racionales no Uniformes (NURBS)
Sistemas CAD/CAM
Ingeniería inversa
- Rights
- License
- Acceso cerrado
id |
REPOEAFIT2_245e95d1e748e6ee8c0b065156990eec |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/9544 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Triangular mesh parameterization with trimmed surfaces |
title |
Triangular mesh parameterization with trimmed surfaces |
spellingShingle |
Triangular mesh parameterization with trimmed surfaces VARIEDADES (MATEMÁTICAS) CUADRATURA DE GAUSS ALGORITMOS GENERACIÓN NUMÉRICA DE MALLAS (ANÁLISIS NUMÉRICO) Manifolds (Mathematics) Gaussian quadrature formulas Algorithms Numerical grid generation (Numerical analysis) Manifolds (Mathematics) Gaussian quadrature formulas Algorithms Numerical grid generation (Numerical analysis) Superficies NURBS Superficies B-Splines Racionales no Uniformes (NURBS) Sistemas CAD/CAM Ingeniería inversa |
title_short |
Triangular mesh parameterization with trimmed surfaces |
title_full |
Triangular mesh parameterization with trimmed surfaces |
title_fullStr |
Triangular mesh parameterization with trimmed surfaces |
title_full_unstemmed |
Triangular mesh parameterization with trimmed surfaces |
title_sort |
Triangular mesh parameterization with trimmed surfaces |
dc.creator.fl_str_mv |
Ruíz, Óscar E. Mejía, Daniel Cadavid, Carlos A. |
dc.contributor.department.spa.fl_str_mv |
Universidad EAFIT. Departamento de Ingeniería Mecánica |
dc.contributor.author.none.fl_str_mv |
Ruíz, Óscar E. Mejía, Daniel Cadavid, Carlos A. |
dc.contributor.researchgroup.spa.fl_str_mv |
Laboratorio CAD/CAM/CAE |
dc.subject.lemb.spa.fl_str_mv |
VARIEDADES (MATEMÁTICAS) CUADRATURA DE GAUSS ALGORITMOS GENERACIÓN NUMÉRICA DE MALLAS (ANÁLISIS NUMÉRICO) |
topic |
VARIEDADES (MATEMÁTICAS) CUADRATURA DE GAUSS ALGORITMOS GENERACIÓN NUMÉRICA DE MALLAS (ANÁLISIS NUMÉRICO) Manifolds (Mathematics) Gaussian quadrature formulas Algorithms Numerical grid generation (Numerical analysis) Manifolds (Mathematics) Gaussian quadrature formulas Algorithms Numerical grid generation (Numerical analysis) Superficies NURBS Superficies B-Splines Racionales no Uniformes (NURBS) Sistemas CAD/CAM Ingeniería inversa |
dc.subject.keyword.spa.fl_str_mv |
Manifolds (Mathematics) Gaussian quadrature formulas Algorithms Numerical grid generation (Numerical analysis) |
dc.subject.keyword.eng.fl_str_mv |
Manifolds (Mathematics) Gaussian quadrature formulas Algorithms Numerical grid generation (Numerical analysis) |
dc.subject.keyword..keywor.fl_str_mv |
Superficies NURBS Superficies B-Splines Racionales no Uniformes (NURBS) Sistemas CAD/CAM Ingeniería inversa |
description |
Given a 2manifold triangular mesh \(M \subset {\mathbb {R}}^3\), with border, a parameterization of \(M\) is a FACE or trimmed surface \(F=\{S,L_0,\ldots, L_m\}\) -- \(F\) is a connected subset or region of a parametric surface \(S\), bounded by a set of LOOPs \(L_0,\ldots ,L_m\) such that each \(L_i \subset S\) is a closed 1manifold having no intersection with the other \(L_j\) LOOPs -- The parametric surface \(S\) is a statistical fit of the mesh \(M\) -- \(L_0\) is the outermost LOOP bounding \(F\) and \(L_i\) is the LOOP of the ith hole in \(F\) (if any) -- The problem of parameterizing triangular meshes is relevant for reverse engineering, tool path planning, feature detection, redesign, etc -- Stateofart mesh procedures parameterize a rectangular mesh \(M\) -- To improve such procedures, we report here the implementation of an algorithm which parameterizes meshes \(M\) presenting holes and concavities -- We synthesize a parametric surface \(S \subset {\mathbb {R}}^3\) which approximates a superset of the mesh \(M\) -- Then, we compute a set of LOOPs trimming \(S\), and therefore completing the FACE \(F=\ {S,L_0,\ldots ,L_m\}\) -- Our algorithm gives satisfactory results for \(M\) having low Gaussian curvature (i.e., \(M\) being quasi-developable or developable) -- This assumption is a reasonable one, since \(M\) is the product of manifold segmentation preprocessing -- Our algorithm computes: (1) a manifold learning mapping \(\phi : M \rightarrow U \subset {\mathbb {R}}^2\), (2) an inverse mapping \(S: W \subset {\mathbb {R}}^2 \rightarrow {\mathbb {R}}^3\), with \ (W\) being a rectangular grid containing and surpassing \(U\) -- To compute \(\phi\) we test IsoMap, Laplacian Eigenmaps and Hessian local linear embedding (best results with HLLE) -- For the back mapping (NURBS) \(S\) the crucial step is to find a control polyhedron \(P\), which is an extrapolation of \(M\) -- We calculate \(P\) by extrapolating radial basis functions that interpolate points inside \(\phi (M)\) -- We successfully test our implementation with several datasets presenting concavities, holes, and are extremely nondevelopable -- Ongoing work is being devoted to manifold segmentation which facilitates mesh parameterization |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.available.none.fl_str_mv |
2016-10-24T23:07:02Z |
dc.date.accessioned.none.fl_str_mv |
2016-10-24T23:07:02Z |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/article article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1955-2513 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/9544 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s12008-015-0276-1 |
identifier_str_mv |
1955-2513 10.1007/s12008-015-0276-1 |
url |
http://hdl.handle.net/10784/9544 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
International Journal on Interactive Design and Manufacturing (IJIDeM), Volume 9, Issue 4, pp 303-316 |
dc.relation.uri.none.fl_str_mv |
http://link.springer.com/article/10.1007/s12008-015-0276-1 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.local.spa.fl_str_mv |
Acceso cerrado |
rights_invalid_str_mv |
Acceso cerrado http://purl.org/coar/access_right/c_14cb |
dc.format.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Verlag |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/6b3b919b-ae33-4d35-ad90-66d5850f3be8/download https://repository.eafit.edu.co/bitstreams/a865c0be-d978-41de-a24c-d923fdf08757/download https://repository.eafit.edu.co/bitstreams/9f8fb8fb-fec5-4ff3-a2fe-4e57a3cdb174/download https://repository.eafit.edu.co/bitstreams/521a16e2-6ae6-4912-9a7d-e4998f40f76c/download |
bitstream.checksum.fl_str_mv |
76025f86b095439b7ac65b367055d40c 136c24dcab0a92f5a252eb12e0501e32 848a606dfe1d91ec9eb66401e8de0693 eabd50c101d44390b89dd8c2de1a1bf0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102420714029056 |
spelling |
2016-10-24T23:07:02Z20152016-10-24T23:07:02Z1955-2513http://hdl.handle.net/10784/954410.1007/s12008-015-0276-1Given a 2manifold triangular mesh \(M \subset {\mathbb {R}}^3\), with border, a parameterization of \(M\) is a FACE or trimmed surface \(F=\{S,L_0,\ldots, L_m\}\) -- \(F\) is a connected subset or region of a parametric surface \(S\), bounded by a set of LOOPs \(L_0,\ldots ,L_m\) such that each \(L_i \subset S\) is a closed 1manifold having no intersection with the other \(L_j\) LOOPs -- The parametric surface \(S\) is a statistical fit of the mesh \(M\) -- \(L_0\) is the outermost LOOP bounding \(F\) and \(L_i\) is the LOOP of the ith hole in \(F\) (if any) -- The problem of parameterizing triangular meshes is relevant for reverse engineering, tool path planning, feature detection, redesign, etc -- Stateofart mesh procedures parameterize a rectangular mesh \(M\) -- To improve such procedures, we report here the implementation of an algorithm which parameterizes meshes \(M\) presenting holes and concavities -- We synthesize a parametric surface \(S \subset {\mathbb {R}}^3\) which approximates a superset of the mesh \(M\) -- Then, we compute a set of LOOPs trimming \(S\), and therefore completing the FACE \(F=\ {S,L_0,\ldots ,L_m\}\) -- Our algorithm gives satisfactory results for \(M\) having low Gaussian curvature (i.e., \(M\) being quasi-developable or developable) -- This assumption is a reasonable one, since \(M\) is the product of manifold segmentation preprocessing -- Our algorithm computes: (1) a manifold learning mapping \(\phi : M \rightarrow U \subset {\mathbb {R}}^2\), (2) an inverse mapping \(S: W \subset {\mathbb {R}}^2 \rightarrow {\mathbb {R}}^3\), with \ (W\) being a rectangular grid containing and surpassing \(U\) -- To compute \(\phi\) we test IsoMap, Laplacian Eigenmaps and Hessian local linear embedding (best results with HLLE) -- For the back mapping (NURBS) \(S\) the crucial step is to find a control polyhedron \(P\), which is an extrapolation of \(M\) -- We calculate \(P\) by extrapolating radial basis functions that interpolate points inside \(\phi (M)\) -- We successfully test our implementation with several datasets presenting concavities, holes, and are extremely nondevelopable -- Ongoing work is being devoted to manifold segmentation which facilitates mesh parameterizationapplication/pdfengSpringer VerlagInternational Journal on Interactive Design and Manufacturing (IJIDeM), Volume 9, Issue 4, pp 303-316http://link.springer.com/article/10.1007/s12008-015-0276-1Acceso cerradohttp://purl.org/coar/access_right/c_14cbTriangular mesh parameterization with trimmed surfacesinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1VARIEDADES (MATEMÁTICAS)CUADRATURA DE GAUSSALGORITMOSGENERACIÓN NUMÉRICA DE MALLAS (ANÁLISIS NUMÉRICO)Manifolds (Mathematics)Gaussian quadrature formulasAlgorithmsNumerical grid generation (Numerical analysis)Manifolds (Mathematics)Gaussian quadrature formulasAlgorithmsNumerical grid generation (Numerical analysis)Superficies NURBSSuperficies B-Splines Racionales no Uniformes (NURBS)Sistemas CAD/CAMIngeniería inversaUniversidad EAFIT. Departamento de Ingeniería MecánicaRuíz, Óscar E.79da89a9-56e7-4e32-9960-e465497e926e-1Mejía, Daniel43764d01-0c38-460f-835d-80c902db3f80-1Cadavid, Carlos A.618541fb-aa48-412d-a999-9dd7d5abc7f1-1Laboratorio CAD/CAM/CAEInternational Journal on Interactive Design and Manufacturing (IJIDeM)International Journal on Interactive Design and Manufacturing94303316IJIDeMLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/6b3b919b-ae33-4d35-ad90-66d5850f3be8/download76025f86b095439b7ac65b367055d40cMD51ORIGINALTriangular-mesh.htmlTriangular-mesh.htmltext/html299https://repository.eafit.edu.co/bitstreams/a865c0be-d978-41de-a24c-d923fdf08757/download136c24dcab0a92f5a252eb12e0501e32MD52Triangular-mesh.pdfTriangular-mesh.pdfWeb Page Printapplication/pdf212834https://repository.eafit.edu.co/bitstreams/9f8fb8fb-fec5-4ff3-a2fe-4e57a3cdb174/download848a606dfe1d91ec9eb66401e8de0693MD53s12008-015-0276-1.pdfs12008-015-0276-1.pdfapplication/pdf5640444https://repository.eafit.edu.co/bitstreams/521a16e2-6ae6-4912-9a7d-e4998f40f76c/downloadeabd50c101d44390b89dd8c2de1a1bf0MD5410784/9544oai:repository.eafit.edu.co:10784/95442024-12-04 11:49:26.246open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |