Semi-nonparametric VaR forecasts for hedge funds during the recent crisis

The need to provide accurate value-at-risk (VaR) forecasting measures has triggered an important literature in econophysics. Although these accurate VaR models and methodologies are particularly demanded for hedge fund managers, there exist few articles specifically devoted to implement new techniqu...

Full description

Autores:
B. Del Brio, Esther
Mora-Valencia, Andrés
Perote, Javier
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/7616
Acceso en línea:
http://hdl.handle.net/10784/7616
Palabra clave:
Hedge funds
Value-at-risk
Backtesting
Extreme value theory
Gram–Charlier series
Copulas
Rights
License
restrictedAccess
id REPOEAFIT2_22fe59192a2c4ab6310274bc48c7f0f2
oai_identifier_str oai:repository.eafit.edu.co:10784/7616
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling 20142015-11-06T21:15:35Z20142015-11-06T21:15:35Z0378-4371http://hdl.handle.net/10784/7616doi:10.1016/j.physa.2014.01.037The need to provide accurate value-at-risk (VaR) forecasting measures has triggered an important literature in econophysics. Although these accurate VaR models and methodologies are particularly demanded for hedge fund managers, there exist few articles specifically devoted to implement new techniques in hedge fund returns VaR forecasting. This article advances in these issues by comparing the performance of risk measures based on parametric distributions (the normal, Student’s t and skewed-t), semi-nonparametric (SNP) methodologies based on Gram–Charlier (GC) series and the extreme value theory (EVT) approach. Our results show that normal-, Student’s t- and Skewed t- based methodologies fail to forecast hedge fund VaR, whilst SNP and EVT approaches accurately success on it. We extend these results to the multivariate framework by providing an explicit formula for the GC copula and its density that encompasses the Gaussian copula and accounts for non-linear dependences. We show that the VaR obtained by the meta GC accurately captures portfolio risk and outperforms regulatory VaR estimates obtained through the meta Gaussian and Student’s tdistributions.engElsevierPhysica A: Statistical Mechanics and its Applications. Vol. 401, 2014, pp.330-343http://www.sciencedirect.com/science/article/pii/S0378437114000491http://www.sciencedirect.com/science/article/pii/S0378437114000491restrictedAccessCopyright © 2015 Elsevier B.V. or its licensors or contributors. ScienceDirect® is a registered trademark of Elsevier B.V.Acceso restringidohttp://purl.org/coar/access_right/c_16ecPhysica A: Statistical Mechanics and its Applications. Vol. 401, 2014, pp.330-343Semi-nonparametric VaR forecasts for hedge funds during the recent crisisarticleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoObra publicadapublishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hedge fundsValue-at-riskBacktestingExtreme value theoryGram–Charlier seriesCopulasEconomía y FinanzasFinanzasB. Del Brio, EstherMora-Valencia, AndrésPerote, JavierFaculty of Economics and Business, Department of Business, University of Salamanca, SpainSchool of Economics and Finance, Department of Finance, EAFIT University, ColombiaFaculty of Economics and Business, Department of Economics, University of Salamanca, SpainGrupo de Investigación Finanzas y BancaPhysica A: Statistical Mechanics and its Applications401330343ORIGINAL1-s2.0-S0378437114000491-main.pdf1-s2.0-S0378437114000491-main.pdfapplication/pdf522142https://repository.eafit.edu.co/bitstreams/70f7d9be-26a4-4807-a5ac-8765286f75b5/download70bb502a02d89ef1dd0eb76ca4caa84aMD5110784/7616oai:repository.eafit.edu.co:10784/76162023-03-15 08:21:19.42open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Semi-nonparametric VaR forecasts for hedge funds during the recent crisis
title Semi-nonparametric VaR forecasts for hedge funds during the recent crisis
spellingShingle Semi-nonparametric VaR forecasts for hedge funds during the recent crisis
Hedge funds
Value-at-risk
Backtesting
Extreme value theory
Gram–Charlier series
Copulas
title_short Semi-nonparametric VaR forecasts for hedge funds during the recent crisis
title_full Semi-nonparametric VaR forecasts for hedge funds during the recent crisis
title_fullStr Semi-nonparametric VaR forecasts for hedge funds during the recent crisis
title_full_unstemmed Semi-nonparametric VaR forecasts for hedge funds during the recent crisis
title_sort Semi-nonparametric VaR forecasts for hedge funds during the recent crisis
dc.creator.fl_str_mv B. Del Brio, Esther
Mora-Valencia, Andrés
Perote, Javier
dc.contributor.department.spa.fl_str_mv Economía y Finanzas
Finanzas
dc.contributor.author.spa.fl_str_mv B. Del Brio, Esther
Mora-Valencia, Andrés
Perote, Javier
dc.contributor.affiliation.spa.fl_str_mv Faculty of Economics and Business, Department of Business, University of Salamanca, Spain
School of Economics and Finance, Department of Finance, EAFIT University, Colombia
Faculty of Economics and Business, Department of Economics, University of Salamanca, Spain
dc.contributor.program.spa.fl_str_mv Grupo de Investigación Finanzas y Banca
dc.subject.keyword.eng.fl_str_mv Hedge funds
Value-at-risk
Backtesting
Extreme value theory
Gram–Charlier series
Copulas
topic Hedge funds
Value-at-risk
Backtesting
Extreme value theory
Gram–Charlier series
Copulas
description The need to provide accurate value-at-risk (VaR) forecasting measures has triggered an important literature in econophysics. Although these accurate VaR models and methodologies are particularly demanded for hedge fund managers, there exist few articles specifically devoted to implement new techniques in hedge fund returns VaR forecasting. This article advances in these issues by comparing the performance of risk measures based on parametric distributions (the normal, Student’s t and skewed-t), semi-nonparametric (SNP) methodologies based on Gram–Charlier (GC) series and the extreme value theory (EVT) approach. Our results show that normal-, Student’s t- and Skewed t- based methodologies fail to forecast hedge fund VaR, whilst SNP and EVT approaches accurately success on it. We extend these results to the multivariate framework by providing an explicit formula for the GC copula and its density that encompasses the Gaussian copula and accounts for non-linear dependences. We show that the VaR obtained by the meta GC accurately captures portfolio risk and outperforms regulatory VaR estimates obtained through the meta Gaussian and Student’s tdistributions.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.available.none.fl_str_mv 2015-11-06T21:15:35Z
dc.date.accessioned.none.fl_str_mv 2015-11-06T21:15:35Z
dc.date.none.fl_str_mv 2014
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
dc.type.hasVersion.spa.fl_str_mv Obra publicada
dc.type.hasVersion.eng.fl_str_mv publishedVersion
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0378-4371
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/7616
dc.identifier.doi.none.fl_str_mv doi:10.1016/j.physa.2014.01.037
identifier_str_mv 0378-4371
doi:10.1016/j.physa.2014.01.037
url http://hdl.handle.net/10784/7616
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv Physica A: Statistical Mechanics and its Applications. Vol. 401, 2014, pp.330-343
dc.relation.isversionof.none.fl_str_mv http://www.sciencedirect.com/science/article/pii/S0378437114000491
dc.relation.uri.none.fl_str_mv http://www.sciencedirect.com/science/article/pii/S0378437114000491
dc.rights.eng.fl_str_mv restrictedAccess
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.local.spa.fl_str_mv Acceso restringido
rights_invalid_str_mv restrictedAccess
Acceso restringido
http://purl.org/coar/access_right/c_16ec
dc.publisher.eng.fl_str_mv Elsevier
dc.source.spa.fl_str_mv Physica A: Statistical Mechanics and its Applications. Vol. 401, 2014, pp.330-343
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/70f7d9be-26a4-4807-a5ac-8765286f75b5/download
bitstream.checksum.fl_str_mv 70bb502a02d89ef1dd0eb76ca4caa84a
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110500712087552