Semi-nonparametric VaR forecasts for hedge funds during the recent crisis
The need to provide accurate value-at-risk (VaR) forecasting measures has triggered an important literature in econophysics. Although these accurate VaR models and methodologies are particularly demanded for hedge fund managers, there exist few articles specifically devoted to implement new techniqu...
- Autores:
-
B. Del Brio, Esther
Mora-Valencia, Andrés
Perote, Javier
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/7616
- Acceso en línea:
- http://hdl.handle.net/10784/7616
- Palabra clave:
- Hedge funds
Value-at-risk
Backtesting
Extreme value theory
Gram–Charlier series
Copulas
- Rights
- License
- restrictedAccess
id |
REPOEAFIT2_22fe59192a2c4ab6310274bc48c7f0f2 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/7616 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
20142015-11-06T21:15:35Z20142015-11-06T21:15:35Z0378-4371http://hdl.handle.net/10784/7616doi:10.1016/j.physa.2014.01.037The need to provide accurate value-at-risk (VaR) forecasting measures has triggered an important literature in econophysics. Although these accurate VaR models and methodologies are particularly demanded for hedge fund managers, there exist few articles specifically devoted to implement new techniques in hedge fund returns VaR forecasting. This article advances in these issues by comparing the performance of risk measures based on parametric distributions (the normal, Student’s t and skewed-t), semi-nonparametric (SNP) methodologies based on Gram–Charlier (GC) series and the extreme value theory (EVT) approach. Our results show that normal-, Student’s t- and Skewed t- based methodologies fail to forecast hedge fund VaR, whilst SNP and EVT approaches accurately success on it. We extend these results to the multivariate framework by providing an explicit formula for the GC copula and its density that encompasses the Gaussian copula and accounts for non-linear dependences. We show that the VaR obtained by the meta GC accurately captures portfolio risk and outperforms regulatory VaR estimates obtained through the meta Gaussian and Student’s tdistributions.engElsevierPhysica A: Statistical Mechanics and its Applications. Vol. 401, 2014, pp.330-343http://www.sciencedirect.com/science/article/pii/S0378437114000491http://www.sciencedirect.com/science/article/pii/S0378437114000491restrictedAccessCopyright © 2015 Elsevier B.V. or its licensors or contributors. ScienceDirect® is a registered trademark of Elsevier B.V.Acceso restringidohttp://purl.org/coar/access_right/c_16ecPhysica A: Statistical Mechanics and its Applications. Vol. 401, 2014, pp.330-343Semi-nonparametric VaR forecasts for hedge funds during the recent crisisarticleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoObra publicadapublishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hedge fundsValue-at-riskBacktestingExtreme value theoryGram–Charlier seriesCopulasEconomía y FinanzasFinanzasB. Del Brio, EstherMora-Valencia, AndrésPerote, JavierFaculty of Economics and Business, Department of Business, University of Salamanca, SpainSchool of Economics and Finance, Department of Finance, EAFIT University, ColombiaFaculty of Economics and Business, Department of Economics, University of Salamanca, SpainGrupo de Investigación Finanzas y BancaPhysica A: Statistical Mechanics and its Applications401330343ORIGINAL1-s2.0-S0378437114000491-main.pdf1-s2.0-S0378437114000491-main.pdfapplication/pdf522142https://repository.eafit.edu.co/bitstreams/70f7d9be-26a4-4807-a5ac-8765286f75b5/download70bb502a02d89ef1dd0eb76ca4caa84aMD5110784/7616oai:repository.eafit.edu.co:10784/76162023-03-15 08:21:19.42open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Semi-nonparametric VaR forecasts for hedge funds during the recent crisis |
title |
Semi-nonparametric VaR forecasts for hedge funds during the recent crisis |
spellingShingle |
Semi-nonparametric VaR forecasts for hedge funds during the recent crisis Hedge funds Value-at-risk Backtesting Extreme value theory Gram–Charlier series Copulas |
title_short |
Semi-nonparametric VaR forecasts for hedge funds during the recent crisis |
title_full |
Semi-nonparametric VaR forecasts for hedge funds during the recent crisis |
title_fullStr |
Semi-nonparametric VaR forecasts for hedge funds during the recent crisis |
title_full_unstemmed |
Semi-nonparametric VaR forecasts for hedge funds during the recent crisis |
title_sort |
Semi-nonparametric VaR forecasts for hedge funds during the recent crisis |
dc.creator.fl_str_mv |
B. Del Brio, Esther Mora-Valencia, Andrés Perote, Javier |
dc.contributor.department.spa.fl_str_mv |
Economía y Finanzas Finanzas |
dc.contributor.author.spa.fl_str_mv |
B. Del Brio, Esther Mora-Valencia, Andrés Perote, Javier |
dc.contributor.affiliation.spa.fl_str_mv |
Faculty of Economics and Business, Department of Business, University of Salamanca, Spain School of Economics and Finance, Department of Finance, EAFIT University, Colombia Faculty of Economics and Business, Department of Economics, University of Salamanca, Spain |
dc.contributor.program.spa.fl_str_mv |
Grupo de Investigación Finanzas y Banca |
dc.subject.keyword.eng.fl_str_mv |
Hedge funds Value-at-risk Backtesting Extreme value theory Gram–Charlier series Copulas |
topic |
Hedge funds Value-at-risk Backtesting Extreme value theory Gram–Charlier series Copulas |
description |
The need to provide accurate value-at-risk (VaR) forecasting measures has triggered an important literature in econophysics. Although these accurate VaR models and methodologies are particularly demanded for hedge fund managers, there exist few articles specifically devoted to implement new techniques in hedge fund returns VaR forecasting. This article advances in these issues by comparing the performance of risk measures based on parametric distributions (the normal, Student’s t and skewed-t), semi-nonparametric (SNP) methodologies based on Gram–Charlier (GC) series and the extreme value theory (EVT) approach. Our results show that normal-, Student’s t- and Skewed t- based methodologies fail to forecast hedge fund VaR, whilst SNP and EVT approaches accurately success on it. We extend these results to the multivariate framework by providing an explicit formula for the GC copula and its density that encompasses the Gaussian copula and accounts for non-linear dependences. We show that the VaR obtained by the meta GC accurately captures portfolio risk and outperforms regulatory VaR estimates obtained through the meta Gaussian and Student’s tdistributions. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.available.none.fl_str_mv |
2015-11-06T21:15:35Z |
dc.date.accessioned.none.fl_str_mv |
2015-11-06T21:15:35Z |
dc.date.none.fl_str_mv |
2014 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.hasVersion.spa.fl_str_mv |
Obra publicada |
dc.type.hasVersion.eng.fl_str_mv |
publishedVersion |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0378-4371 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/7616 |
dc.identifier.doi.none.fl_str_mv |
doi:10.1016/j.physa.2014.01.037 |
identifier_str_mv |
0378-4371 doi:10.1016/j.physa.2014.01.037 |
url |
http://hdl.handle.net/10784/7616 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
Physica A: Statistical Mechanics and its Applications. Vol. 401, 2014, pp.330-343 |
dc.relation.isversionof.none.fl_str_mv |
http://www.sciencedirect.com/science/article/pii/S0378437114000491 |
dc.relation.uri.none.fl_str_mv |
http://www.sciencedirect.com/science/article/pii/S0378437114000491 |
dc.rights.eng.fl_str_mv |
restrictedAccess |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.local.spa.fl_str_mv |
Acceso restringido |
rights_invalid_str_mv |
restrictedAccess Acceso restringido http://purl.org/coar/access_right/c_16ec |
dc.publisher.eng.fl_str_mv |
Elsevier |
dc.source.spa.fl_str_mv |
Physica A: Statistical Mechanics and its Applications. Vol. 401, 2014, pp.330-343 |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/70f7d9be-26a4-4807-a5ac-8765286f75b5/download |
bitstream.checksum.fl_str_mv |
70bb502a02d89ef1dd0eb76ca4caa84a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110500712087552 |