Outliers in semi-parametric Estimation of Treatment Effects
Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric ATE estimads. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametr...
- Autores:
-
Ugarte Ontiveros, Darwin
Canavire-Bacarreza, Gustavo
Castro Peñarrieta, Luis
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/11750
- Acceso en línea:
- http://hdl.handle.net/10784/11750
- Palabra clave:
- Treatment effects
Outliers
Propensity score
Mahalanobis distance
efectos del tratamiento
valores atípicos
puntaje de propensión
distancia Mahalanobis
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_21fe4522277be8553587cb400fed0ca7 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/11750 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Outliers in semi-parametric Estimation of Treatment Effects |
title |
Outliers in semi-parametric Estimation of Treatment Effects |
spellingShingle |
Outliers in semi-parametric Estimation of Treatment Effects Treatment effects Outliers Propensity score Mahalanobis distance efectos del tratamiento valores atípicos puntaje de propensión distancia Mahalanobis |
title_short |
Outliers in semi-parametric Estimation of Treatment Effects |
title_full |
Outliers in semi-parametric Estimation of Treatment Effects |
title_fullStr |
Outliers in semi-parametric Estimation of Treatment Effects |
title_full_unstemmed |
Outliers in semi-parametric Estimation of Treatment Effects |
title_sort |
Outliers in semi-parametric Estimation of Treatment Effects |
dc.creator.fl_str_mv |
Ugarte Ontiveros, Darwin Canavire-Bacarreza, Gustavo Castro Peñarrieta, Luis |
dc.contributor.eafitauthor.none.fl_str_mv |
gcanavir@eafit.edu.co |
dc.contributor.author.none.fl_str_mv |
Ugarte Ontiveros, Darwin Canavire-Bacarreza, Gustavo Castro Peñarrieta, Luis |
dc.subject.keyword.eng.fl_str_mv |
Treatment effects Outliers Propensity score Mahalanobis distance |
topic |
Treatment effects Outliers Propensity score Mahalanobis distance efectos del tratamiento valores atípicos puntaje de propensión distancia Mahalanobis |
dc.subject.keyword.spa.fl_str_mv |
efectos del tratamiento valores atípicos puntaje de propensión distancia Mahalanobis |
description |
Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric ATE estimads. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametric methods, such as matching, are biased in the presence of outliers. Bad and good leverage points outliers are considered. The bias arises because bad leverage points completely change the distribution of the metrics used to define counterfactuals. Whereas good leverage points increase the chance of breaking the common support condition and distort the balance of the covariates and which may push practitioners to misspecify the propensity score. We provide some clues to diagnose the presence of outliers and propose a reweighting estimator that is robust against outliers based on the Stahel-Donoho multivariate estimator of scale and location. An application of this estimator to LaLonde (1986) data allows us to explain the Dehejia and Wahba (2002) and Smith and Todd (2005) debate on the inability of matching estimators to deal with the evaluation problem. |
publishDate |
2017 |
dc.date.available.none.fl_str_mv |
2017-11-01T13:34:56Z |
dc.date.issued.none.fl_str_mv |
2017-10-30 |
dc.date.accessioned.none.fl_str_mv |
2017-11-01T13:34:56Z |
dc.type.eng.fl_str_mv |
workingPaper info:eu-repo/semantics/workingPaper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.local.spa.fl_str_mv |
Documento de trabajo de investigación |
dc.type.hasVersion.eng.fl_str_mv |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/11750 |
dc.identifier.jel.none.fl_str_mv |
C21 C14 C52 C13 |
url |
http://hdl.handle.net/10784/11750 |
identifier_str_mv |
C21 C14 C52 C13 |
dc.language.iso.eng.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.department.spa.fl_str_mv |
Escuela de Economía y Finanzas |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/110cb297-e37e-4f78-b91f-0e2308f6da8d/download https://repository.eafit.edu.co/bitstreams/04b0ab23-23fd-442c-8862-5a5953e9709e/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 460005415757ce2efb8c8c94ecdfa783 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102430733172736 |
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2017-11-01T13:34:56Z2017-10-302017-11-01T13:34:56Zhttp://hdl.handle.net/10784/11750C21C14C52C13Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric ATE estimads. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametric methods, such as matching, are biased in the presence of outliers. Bad and good leverage points outliers are considered. The bias arises because bad leverage points completely change the distribution of the metrics used to define counterfactuals. Whereas good leverage points increase the chance of breaking the common support condition and distort the balance of the covariates and which may push practitioners to misspecify the propensity score. We provide some clues to diagnose the presence of outliers and propose a reweighting estimator that is robust against outliers based on the Stahel-Donoho multivariate estimator of scale and location. An application of this estimator to LaLonde (1986) data allows us to explain the Dehejia and Wahba (2002) and Smith and Todd (2005) debate on the inability of matching estimators to deal with the evaluation problem.Los estimados de efectos de tratamiento promedio pueden presentar un sesgo significativo bajo presencia de valores atípicos. Además, los valores atípicos pueden ser particularmente difíciles de detectar, creando sesgo e inconsistencia en las estimaciones semi-paramétricas de ATE. En este documento, nosotros utilizamos simulaciones de Monte Carlo para demostrar que los métodos semiparamétricos, tales como coincidencia, están sesgados en presencia de valores atípicos. Puntos de apalancamiento malos y Buenos se consideran. El sesgo surge porque los puntos de apalancamiento malo completamente cambian la distribución de las métricas utilizadas para definir contrafactuales. Mientras buenos puntos de apalancamiento aumentan las posibilidades de romper la condición de soporte común y distorsionar el equilibrio de las covariables y que puede empujar a los practicantes a no especifique adecuadamente la puntuación de propensión. Proporcionamos algunas pistas para diagnosticar la presencia de valores atípicos y proponemos un estimador de reponderación que es robusto frente a valores atípicos basado en el estimador de escala y ubicación Stavar-Donoho multivariado. Una aplicación de este estimador a los datos de LaLonde (1986) nos permite explicar el Dehejia y Wahba (2002) y Smith y Todd (2005) debaten sobre la incapacidad de estimadores coincidentes para tratar el problema de evaluación.spaUniversidad EAFITEscuela de Economía y FinanzasOutliers in semi-parametric Estimation of Treatment EffectsworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Treatment effectsOutliersPropensity scoreMahalanobis distanceefectos del tratamientovalores atípicospuntaje de propensióndistancia Mahalanobisgcanavir@eafit.edu.coUgarte Ontiveros, Darwin28e0b896-0311-46c7-b878-0555ff491d3d-1Canavire-Bacarreza, Gustavod7bb3ad8-903c-44fc-a824-a8917b11004d-1Castro Peñarrieta, Luisf19e7545-9aaf-48c6-aed0-424ef884e959-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.eafit.edu.co/bitstreams/110cb297-e37e-4f78-b91f-0e2308f6da8d/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALWP-2017-20 Darwin Ugarte Ontiveros.pdfWP-2017-20 Darwin Ugarte Ontiveros.pdfDocumento de trabajo de investigaciónapplication/pdf1443336https://repository.eafit.edu.co/bitstreams/04b0ab23-23fd-442c-8862-5a5953e9709e/download460005415757ce2efb8c8c94ecdfa783MD5210784/11750oai:repository.eafit.edu.co:10784/117502024-12-04 11:49:56.414open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |