Outliers in semi-parametric Estimation of Treatment Effects

Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric ATE estimads. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametr...

Full description

Autores:
Ugarte Ontiveros, Darwin
Canavire-Bacarreza, Gustavo
Castro Peñarrieta, Luis
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/11750
Acceso en línea:
http://hdl.handle.net/10784/11750
Palabra clave:
Treatment effects
Outliers
Propensity score
Mahalanobis distance
efectos del tratamiento
valores atípicos
puntaje de propensión
distancia Mahalanobis
Rights
License
Acceso abierto
id REPOEAFIT2_21fe4522277be8553587cb400fed0ca7
oai_identifier_str oai:repository.eafit.edu.co:10784/11750
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Outliers in semi-parametric Estimation of Treatment Effects
title Outliers in semi-parametric Estimation of Treatment Effects
spellingShingle Outliers in semi-parametric Estimation of Treatment Effects
Treatment effects
Outliers
Propensity score
Mahalanobis distance
efectos del tratamiento
valores atípicos
puntaje de propensión
distancia Mahalanobis
title_short Outliers in semi-parametric Estimation of Treatment Effects
title_full Outliers in semi-parametric Estimation of Treatment Effects
title_fullStr Outliers in semi-parametric Estimation of Treatment Effects
title_full_unstemmed Outliers in semi-parametric Estimation of Treatment Effects
title_sort Outliers in semi-parametric Estimation of Treatment Effects
dc.creator.fl_str_mv Ugarte Ontiveros, Darwin
Canavire-Bacarreza, Gustavo
Castro Peñarrieta, Luis
dc.contributor.eafitauthor.none.fl_str_mv gcanavir@eafit.edu.co
dc.contributor.author.none.fl_str_mv Ugarte Ontiveros, Darwin
Canavire-Bacarreza, Gustavo
Castro Peñarrieta, Luis
dc.subject.keyword.eng.fl_str_mv Treatment effects
Outliers
Propensity score
Mahalanobis distance
topic Treatment effects
Outliers
Propensity score
Mahalanobis distance
efectos del tratamiento
valores atípicos
puntaje de propensión
distancia Mahalanobis
dc.subject.keyword.spa.fl_str_mv efectos del tratamiento
valores atípicos
puntaje de propensión
distancia Mahalanobis
description Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric ATE estimads. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametric methods, such as matching, are biased in the presence of outliers. Bad and good leverage points outliers are considered. The bias arises because bad leverage points completely change the distribution of the metrics used to define counterfactuals. Whereas good leverage points increase the chance of breaking the common support condition and distort the balance of the covariates and which may push practitioners to misspecify the propensity score. We provide some clues to diagnose the presence of outliers and propose a reweighting estimator that is robust against outliers based on the Stahel-Donoho multivariate estimator of scale and location. An application of this estimator to LaLonde (1986) data allows us to explain the Dehejia and Wahba (2002) and Smith and Todd (2005) debate on the inability of matching estimators to deal with the evaluation problem.
publishDate 2017
dc.date.available.none.fl_str_mv 2017-11-01T13:34:56Z
dc.date.issued.none.fl_str_mv 2017-10-30
dc.date.accessioned.none.fl_str_mv 2017-11-01T13:34:56Z
dc.type.eng.fl_str_mv workingPaper
info:eu-repo/semantics/workingPaper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.local.spa.fl_str_mv Documento de trabajo de investigación
dc.type.hasVersion.eng.fl_str_mv draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/11750
dc.identifier.jel.none.fl_str_mv C21
C14
C52
C13
url http://hdl.handle.net/10784/11750
identifier_str_mv C21
C14
C52
C13
dc.language.iso.eng.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.department.spa.fl_str_mv Escuela de Economía y Finanzas
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/110cb297-e37e-4f78-b91f-0e2308f6da8d/download
https://repository.eafit.edu.co/bitstreams/04b0ab23-23fd-442c-8862-5a5953e9709e/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
460005415757ce2efb8c8c94ecdfa783
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1818102430733172736
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2017-11-01T13:34:56Z2017-10-302017-11-01T13:34:56Zhttp://hdl.handle.net/10784/11750C21C14C52C13Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric ATE estimads. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametric methods, such as matching, are biased in the presence of outliers. Bad and good leverage points outliers are considered. The bias arises because bad leverage points completely change the distribution of the metrics used to define counterfactuals. Whereas good leverage points increase the chance of breaking the common support condition and distort the balance of the covariates and which may push practitioners to misspecify the propensity score. We provide some clues to diagnose the presence of outliers and propose a reweighting estimator that is robust against outliers based on the Stahel-Donoho multivariate estimator of scale and location. An application of this estimator to LaLonde (1986) data allows us to explain the Dehejia and Wahba (2002) and Smith and Todd (2005) debate on the inability of matching estimators to deal with the evaluation problem.Los estimados de efectos de tratamiento promedio pueden presentar un sesgo significativo bajo presencia de valores atípicos. Además, los valores atípicos pueden ser particularmente difíciles de detectar, creando sesgo e inconsistencia en las estimaciones semi-paramétricas de ATE. En este documento, nosotros utilizamos simulaciones de Monte Carlo para demostrar que los métodos semiparamétricos, tales como coincidencia, están sesgados en presencia de valores atípicos. Puntos de apalancamiento malos y Buenos se consideran. El sesgo surge porque los puntos de apalancamiento malo completamente cambian la distribución de las métricas utilizadas para definir contrafactuales. Mientras buenos puntos de apalancamiento aumentan las posibilidades de romper la condición de soporte común y distorsionar el equilibrio de las covariables y que puede empujar a los practicantes a no especifique adecuadamente la puntuación de propensión. Proporcionamos algunas pistas para diagnosticar la presencia de valores atípicos y proponemos un estimador de reponderación que es robusto frente a valores atípicos basado en el estimador de escala y ubicación Stavar-Donoho multivariado. Una aplicación de este estimador a los datos de LaLonde (1986) nos permite explicar el Dehejia y Wahba (2002) y Smith y Todd (2005) debaten sobre la incapacidad de estimadores coincidentes para tratar el problema de evaluación.spaUniversidad EAFITEscuela de Economía y FinanzasOutliers in semi-parametric Estimation of Treatment EffectsworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Treatment effectsOutliersPropensity scoreMahalanobis distanceefectos del tratamientovalores atípicospuntaje de propensióndistancia Mahalanobisgcanavir@eafit.edu.coUgarte Ontiveros, Darwin28e0b896-0311-46c7-b878-0555ff491d3d-1Canavire-Bacarreza, Gustavod7bb3ad8-903c-44fc-a824-a8917b11004d-1Castro Peñarrieta, Luisf19e7545-9aaf-48c6-aed0-424ef884e959-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.eafit.edu.co/bitstreams/110cb297-e37e-4f78-b91f-0e2308f6da8d/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALWP-2017-20 Darwin Ugarte Ontiveros.pdfWP-2017-20 Darwin Ugarte Ontiveros.pdfDocumento de trabajo de investigaciónapplication/pdf1443336https://repository.eafit.edu.co/bitstreams/04b0ab23-23fd-442c-8862-5a5953e9709e/download460005415757ce2efb8c8c94ecdfa783MD5210784/11750oai:repository.eafit.edu.co:10784/117502024-12-04 11:49:56.414open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=