Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation

The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of p...

Full description

Autores:
Villegas Gutiérrez, Jairo Alberto
Castaño B., Jorge
Duarte V., Julio
Fierro Y., Esper
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/7410
Acceso en línea:
http://hdl.handle.net/10784/7410
Palabra clave:
KdV equation
soliton
wavelet
Wavelet-Petrov-Galerkin Method
Rights
License
Acceso abierto
id REPOEAFIT2_20efb31ce4c756afeec58211fc7c9f4b
oai_identifier_str oai:repository.eafit.edu.co:10784/7410
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling 2015-10-02T21:21:01Z20122015-10-02T21:21:01Z1314-7552 (Online)1312-885X (Print)http://hdl.handle.net/10784/7410The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).engHikariApplied Mathematical Sciences, Vol. 6, 2012, no. 69, 3411 - 3423http://www.m-hikari.com/ams/ams-2012/ams-69-72-2012/villegasAMS69-72-2012.pdfWavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equationarticleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Acceso abiertohttp://purl.org/coar/access_right/c_abf2KdV equationsolitonwaveletWavelet-Petrov-Galerkin MethodUniversidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y AplicacionesUniversidad Surcolombiana. Departamento de Matemáticas. Neiva, ColombiaVillegas Gutiérrez, Jairo AlbertoVillegas Gutiérrez, Jairo AlbertoCastaño B., JorgeDuarte V., JulioFierro Y., EsperAnálisis Funcional y AplicacionesApplied Mathematical Sciences66934113423LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/2850075d-56a8-42d2-ad26-e03e384a4389/download76025f86b095439b7ac65b367055d40cMD51ORIGINALvillegasAMS69-72-2012.pdfvillegasAMS69-72-2012.pdfapplication/pdf160423https://repository.eafit.edu.co/bitstreams/928d299b-788e-455f-a555-3ab9aa7d18ee/download9ab575c7541d7d46f5c8f968dcbaac03MD5210784/7410oai:repository.eafit.edu.co:10784/74102021-09-24 16:44:19.638open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
title Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
spellingShingle Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
KdV equation
soliton
wavelet
Wavelet-Petrov-Galerkin Method
title_short Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
title_full Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
title_fullStr Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
title_full_unstemmed Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
title_sort Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
dc.creator.fl_str_mv Villegas Gutiérrez, Jairo Alberto
Castaño B., Jorge
Duarte V., Julio
Fierro Y., Esper
dc.contributor.department.none.fl_str_mv Universidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y Aplicaciones
Universidad Surcolombiana. Departamento de Matemáticas. Neiva, Colombia
dc.contributor.eafitauthor.spa.fl_str_mv Villegas Gutiérrez, Jairo Alberto
dc.contributor.author.none.fl_str_mv Villegas Gutiérrez, Jairo Alberto
Castaño B., Jorge
Duarte V., Julio
Fierro Y., Esper
dc.contributor.researchgroup.spa.fl_str_mv Análisis Funcional y Aplicaciones
dc.subject.keyword.eng.fl_str_mv KdV equation
soliton
wavelet
Wavelet-Petrov-Galerkin Method
topic KdV equation
soliton
wavelet
Wavelet-Petrov-Galerkin Method
description The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.available.none.fl_str_mv 2015-10-02T21:21:01Z
dc.date.accessioned.none.fl_str_mv 2015-10-02T21:21:01Z
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1314-7552 (Online)
1312-885X (Print)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/7410
identifier_str_mv 1314-7552 (Online)
1312-885X (Print)
url http://hdl.handle.net/10784/7410
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv Applied Mathematical Sciences, Vol. 6, 2012, no. 69, 3411 - 3423
dc.relation.uri.none.fl_str_mv http://www.m-hikari.com/ams/ams-2012/ams-69-72-2012/villegasAMS69-72-2012.pdf
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Hikari
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/2850075d-56a8-42d2-ad26-e03e384a4389/download
https://repository.eafit.edu.co/bitstreams/928d299b-788e-455f-a555-3ab9aa7d18ee/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
9ab575c7541d7d46f5c8f968dcbaac03
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110504406220800