Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of p...
- Autores:
-
Villegas Gutiérrez, Jairo Alberto
Castaño B., Jorge
Duarte V., Julio
Fierro Y., Esper
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/7410
- Acceso en línea:
- http://hdl.handle.net/10784/7410
- Palabra clave:
- KdV equation
soliton
wavelet
Wavelet-Petrov-Galerkin Method
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_20efb31ce4c756afeec58211fc7c9f4b |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/7410 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
2015-10-02T21:21:01Z20122015-10-02T21:21:01Z1314-7552 (Online)1312-885X (Print)http://hdl.handle.net/10784/7410The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).engHikariApplied Mathematical Sciences, Vol. 6, 2012, no. 69, 3411 - 3423http://www.m-hikari.com/ams/ams-2012/ams-69-72-2012/villegasAMS69-72-2012.pdfWavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equationarticleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Acceso abiertohttp://purl.org/coar/access_right/c_abf2KdV equationsolitonwaveletWavelet-Petrov-Galerkin MethodUniversidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y AplicacionesUniversidad Surcolombiana. Departamento de Matemáticas. Neiva, ColombiaVillegas Gutiérrez, Jairo AlbertoVillegas Gutiérrez, Jairo AlbertoCastaño B., JorgeDuarte V., JulioFierro Y., EsperAnálisis Funcional y AplicacionesApplied Mathematical Sciences66934113423LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/2850075d-56a8-42d2-ad26-e03e384a4389/download76025f86b095439b7ac65b367055d40cMD51ORIGINALvillegasAMS69-72-2012.pdfvillegasAMS69-72-2012.pdfapplication/pdf160423https://repository.eafit.edu.co/bitstreams/928d299b-788e-455f-a555-3ab9aa7d18ee/download9ab575c7541d7d46f5c8f968dcbaac03MD5210784/7410oai:repository.eafit.edu.co:10784/74102021-09-24 16:44:19.638open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation |
title |
Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation |
spellingShingle |
Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation KdV equation soliton wavelet Wavelet-Petrov-Galerkin Method |
title_short |
Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation |
title_full |
Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation |
title_fullStr |
Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation |
title_full_unstemmed |
Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation |
title_sort |
Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation |
dc.creator.fl_str_mv |
Villegas Gutiérrez, Jairo Alberto Castaño B., Jorge Duarte V., Julio Fierro Y., Esper |
dc.contributor.department.none.fl_str_mv |
Universidad EAFIT. Escuela de Ciencias y Humanidades. Grupo de Investigación Análisis Funcional y Aplicaciones Universidad Surcolombiana. Departamento de Matemáticas. Neiva, Colombia |
dc.contributor.eafitauthor.spa.fl_str_mv |
Villegas Gutiérrez, Jairo Alberto |
dc.contributor.author.none.fl_str_mv |
Villegas Gutiérrez, Jairo Alberto Castaño B., Jorge Duarte V., Julio Fierro Y., Esper |
dc.contributor.researchgroup.spa.fl_str_mv |
Análisis Funcional y Aplicaciones |
dc.subject.keyword.eng.fl_str_mv |
KdV equation soliton wavelet Wavelet-Petrov-Galerkin Method |
topic |
KdV equation soliton wavelet Wavelet-Petrov-Galerkin Method |
description |
The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV). |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012 |
dc.date.available.none.fl_str_mv |
2015-10-02T21:21:01Z |
dc.date.accessioned.none.fl_str_mv |
2015-10-02T21:21:01Z |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1314-7552 (Online) 1312-885X (Print) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/7410 |
identifier_str_mv |
1314-7552 (Online) 1312-885X (Print) |
url |
http://hdl.handle.net/10784/7410 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
Applied Mathematical Sciences, Vol. 6, 2012, no. 69, 3411 - 3423 |
dc.relation.uri.none.fl_str_mv |
http://www.m-hikari.com/ams/ams-2012/ams-69-72-2012/villegasAMS69-72-2012.pdf |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.publisher.spa.fl_str_mv |
Hikari |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/2850075d-56a8-42d2-ad26-e03e384a4389/download https://repository.eafit.edu.co/bitstreams/928d299b-788e-455f-a555-3ab9aa7d18ee/download |
bitstream.checksum.fl_str_mv |
76025f86b095439b7ac65b367055d40c 9ab575c7541d7d46f5c8f968dcbaac03 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110504406220800 |