Consequences of omitting relevant inputs on the quality of the data envelopment analysis under different input correlation structures
This paper establishes the consequences of a wrong specification on the quality of the data envelopment analysis. Specifically, the case of omitting a relevant variable in the input oriented problem is analyzed when there are different correlation structures between the inputs. It is established tha...
- Autores:
-
Ramírez Hassan, Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2008
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/556
- Acceso en línea:
- http://hdl.handle.net/10784/556
- Palabra clave:
- Efficiency
Data Envelopment Analysis
Monte Carlo Simulation
Input Correlation Structure
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_20d6ec2b0cbf22bbc640a6aa1c9d277c |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/556 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Consequences of omitting relevant inputs on the quality of the data envelopment analysis under different input correlation structures |
title |
Consequences of omitting relevant inputs on the quality of the data envelopment analysis under different input correlation structures |
spellingShingle |
Consequences of omitting relevant inputs on the quality of the data envelopment analysis under different input correlation structures Efficiency Data Envelopment Analysis Monte Carlo Simulation Input Correlation Structure |
title_short |
Consequences of omitting relevant inputs on the quality of the data envelopment analysis under different input correlation structures |
title_full |
Consequences of omitting relevant inputs on the quality of the data envelopment analysis under different input correlation structures |
title_fullStr |
Consequences of omitting relevant inputs on the quality of the data envelopment analysis under different input correlation structures |
title_full_unstemmed |
Consequences of omitting relevant inputs on the quality of the data envelopment analysis under different input correlation structures |
title_sort |
Consequences of omitting relevant inputs on the quality of the data envelopment analysis under different input correlation structures |
dc.creator.fl_str_mv |
Ramírez Hassan, Andrés |
dc.contributor.author.none.fl_str_mv |
Ramírez Hassan, Andrés |
dc.subject.keyword.eng.fl_str_mv |
Efficiency Data Envelopment Analysis Monte Carlo Simulation Input Correlation Structure |
topic |
Efficiency Data Envelopment Analysis Monte Carlo Simulation Input Correlation Structure |
description |
This paper establishes the consequences of a wrong specification on the quality of the data envelopment analysis. Specifically, the case of omitting a relevant variable in the input oriented problem is analyzed when there are different correlation structures between the inputs. It is established that the correlation matrix gives relevant information about the homogeneity of the decision making units and the intensity of inputs used in the production process. The methodology is based on a series of Monte Carlo simulations and the quality of the data envelopment analysis is measured as the difference between the true efficiency and the efficiency calculated. It is found that omitting relevant inputs causes inconsistency, and this problem is worse when there is a negative correlation structure. |
publishDate |
2008 |
dc.date.issued.none.fl_str_mv |
2008-02-03 |
dc.date.available.none.fl_str_mv |
2013-03-08 2013-03-08T18:58:22Z |
dc.date.accessioned.none.fl_str_mv |
2013-03-08T18:58:22Z |
dc.type.eng.fl_str_mv |
workingPaper info:eu-repo/semantics/workingPaper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.local.spa.fl_str_mv |
Documento de trabajo de investigación |
dc.type.hasVersion.eng.fl_str_mv |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/556 |
url |
http://hdl.handle.net/10784/556 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/c82be2d9-6680-457d-97ae-edf889d5c96a/download https://repository.eafit.edu.co/bitstreams/61d4dac3-00c8-4476-8686-744401850206/download |
bitstream.checksum.fl_str_mv |
af102b2a94dd81bfed8db5c1094b28de 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110589213999104 |
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2013-03-082013-03-08T18:58:22Z2008-02-032013-03-08T18:58:22Zhttp://hdl.handle.net/10784/556This paper establishes the consequences of a wrong specification on the quality of the data envelopment analysis. Specifically, the case of omitting a relevant variable in the input oriented problem is analyzed when there are different correlation structures between the inputs. It is established that the correlation matrix gives relevant information about the homogeneity of the decision making units and the intensity of inputs used in the production process. The methodology is based on a series of Monte Carlo simulations and the quality of the data envelopment analysis is measured as the difference between the true efficiency and the efficiency calculated. It is found that omitting relevant inputs causes inconsistency, and this problem is worse when there is a negative correlation structure.engConsequences of omitting relevant inputs on the quality of the data envelopment analysis under different input correlation structuresworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2EfficiencyData Envelopment AnalysisMonte Carlo SimulationInput Correlation StructureRamírez Hassan, Andrésaramir21@eafit.edu.co.ORIGINAL2008-1 Andres Ramirez Hassan.pdf2008-1 Andres Ramirez Hassan.pdfapplication/pdf960741https://repository.eafit.edu.co/bitstreams/c82be2d9-6680-457d-97ae-edf889d5c96a/downloadaf102b2a94dd81bfed8db5c1094b28deMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.eafit.edu.co/bitstreams/61d4dac3-00c8-4476-8686-744401850206/download8a4605be74aa9ea9d79846c1fba20a33MD5210784/556oai:repository.eafit.edu.co:10784/5562024-03-05 14:06:34.242open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |