Fitting of Analytic Surfaces to Noisy Point Clouds

Fitting -continuous or superior surfaces to a set of points sampled on a 2-manifold is central to reverse engi- neering, computer aided geometric modeling, entertaining, modeling of art heritage, etc -- This article addresses the fit- ting of analytic (ellipsoid, cones, cylinders) surfaces in genera...

Full description

Autores:
Ruíz, Óscar
Arroyave, Santiago
Acosta, Diego
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/9685
Acceso en línea:
http://hdl.handle.net/10784/9685
Palabra clave:
CONO (MATEMÁTICAS)
CILINDROS
OPTIMIZACIÓN MATEMÁTICA
REALIDAD VIRTUAL
FUNCIONES ANALÍTICAS
PROCESAMIENTO DE IMÁGENES
MÉTODOS ITERATIVOS (MATEMÁTICAS)
Cone
Cylinders
Mathematical optimization
Virtual reality
Analytic functions
Image processing
Iterative methods (mathematics)
Cone
Cylinders
Mathematical optimization
Virtual reality
Analytic functions
Image processing
Iterative methods (mathematics)
Sistemas CAD/CAM
Rights
License
Acceso abierto
id REPOEAFIT2_1e4de3d84cc54eb675ce63e5d521d719
oai_identifier_str oai:repository.eafit.edu.co:10784/9685
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Fitting of Analytic Surfaces to Noisy Point Clouds
title Fitting of Analytic Surfaces to Noisy Point Clouds
spellingShingle Fitting of Analytic Surfaces to Noisy Point Clouds
CONO (MATEMÁTICAS)
CILINDROS
OPTIMIZACIÓN MATEMÁTICA
REALIDAD VIRTUAL
FUNCIONES ANALÍTICAS
PROCESAMIENTO DE IMÁGENES
MÉTODOS ITERATIVOS (MATEMÁTICAS)
Cone
Cylinders
Mathematical optimization
Virtual reality
Analytic functions
Image processing
Iterative methods (mathematics)
Cone
Cylinders
Mathematical optimization
Virtual reality
Analytic functions
Image processing
Iterative methods (mathematics)
Sistemas CAD/CAM
title_short Fitting of Analytic Surfaces to Noisy Point Clouds
title_full Fitting of Analytic Surfaces to Noisy Point Clouds
title_fullStr Fitting of Analytic Surfaces to Noisy Point Clouds
title_full_unstemmed Fitting of Analytic Surfaces to Noisy Point Clouds
title_sort Fitting of Analytic Surfaces to Noisy Point Clouds
dc.creator.fl_str_mv Ruíz, Óscar
Arroyave, Santiago
Acosta, Diego
dc.contributor.department.spa.fl_str_mv Universidad EAFIT. Departamento de Ingeniería Mecánica
dc.contributor.author.none.fl_str_mv Ruíz, Óscar
Arroyave, Santiago
Acosta, Diego
dc.contributor.researchgroup.spa.fl_str_mv Laboratorio CAD/CAM/CAE
dc.subject.lemb.spa.fl_str_mv CONO (MATEMÁTICAS)
CILINDROS
OPTIMIZACIÓN MATEMÁTICA
REALIDAD VIRTUAL
FUNCIONES ANALÍTICAS
PROCESAMIENTO DE IMÁGENES
MÉTODOS ITERATIVOS (MATEMÁTICAS)
topic CONO (MATEMÁTICAS)
CILINDROS
OPTIMIZACIÓN MATEMÁTICA
REALIDAD VIRTUAL
FUNCIONES ANALÍTICAS
PROCESAMIENTO DE IMÁGENES
MÉTODOS ITERATIVOS (MATEMÁTICAS)
Cone
Cylinders
Mathematical optimization
Virtual reality
Analytic functions
Image processing
Iterative methods (mathematics)
Cone
Cylinders
Mathematical optimization
Virtual reality
Analytic functions
Image processing
Iterative methods (mathematics)
Sistemas CAD/CAM
dc.subject.keyword.spa.fl_str_mv Cone
Cylinders
Mathematical optimization
Virtual reality
Analytic functions
Image processing
Iterative methods (mathematics)
dc.subject.keyword.eng.fl_str_mv Cone
Cylinders
Mathematical optimization
Virtual reality
Analytic functions
Image processing
Iterative methods (mathematics)
dc.subject.keyword..keywor.fl_str_mv Sistemas CAD/CAM
description Fitting -continuous or superior surfaces to a set of points sampled on a 2-manifold is central to reverse engi- neering, computer aided geometric modeling, entertaining, modeling of art heritage, etc -- This article addresses the fit- ting of analytic (ellipsoid, cones, cylinders) surfaces in general position in -- Currently, the state of the art presents limitations in 1) automatically finding an initial guess for the analytic surface F sought, and 2) economically estimat- ing the geometric distance between a point of and the analytic surface SF -- These issues are central in estimating an analytic surface which minimizes its accumulated distances to the point set -- In response to this situation, this article presents and tests novel user-independent strategies for addressing aspects 1) and 2) above, for cylinders, cones and ellipsoids -- A conjecture for the calculation of the distance point-ellipsoid is also proposed -- Our strategies produce good initial guesses for F and fast fitting error estimation for F, leading to an agile and robust optimization algorithm -- Ongoing work addresses the fitting of free-form parametric surfaces to S
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-04
dc.date.available.none.fl_str_mv 2016-11-18T22:20:00Z
dc.date.accessioned.none.fl_str_mv 2016-11-18T22:20:00Z
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2161-1203
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/9685
dc.identifier.doi.none.fl_str_mv 10.4236/ajcm.2013.31A004
identifier_str_mv 2161-1203
10.4236/ajcm.2013.31A004
url http://hdl.handle.net/10784/9685
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv American Journal of Computational Mathematics, Volume 3, Issue 1A, pp 18-26
dc.relation.uri.none.fl_str_mv http://www.scirp.org/journal/PaperInformation.aspx?PaperID=30864
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Scientific Research Publishing
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/7a4252d2-ae1a-439a-8d69-852e500d3dd0/download
https://repository.eafit.edu.co/bitstreams/5793fcee-c4bd-4980-b549-8b1b5022dfd8/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
fed7771afb8ed4b0bc90a2dbfaf22c1b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110142158864384
spelling 2016-11-18T22:20:00Z2013-042016-11-18T22:20:00Z2161-1203http://hdl.handle.net/10784/968510.4236/ajcm.2013.31A004Fitting -continuous or superior surfaces to a set of points sampled on a 2-manifold is central to reverse engi- neering, computer aided geometric modeling, entertaining, modeling of art heritage, etc -- This article addresses the fit- ting of analytic (ellipsoid, cones, cylinders) surfaces in general position in -- Currently, the state of the art presents limitations in 1) automatically finding an initial guess for the analytic surface F sought, and 2) economically estimat- ing the geometric distance between a point of and the analytic surface SF -- These issues are central in estimating an analytic surface which minimizes its accumulated distances to the point set -- In response to this situation, this article presents and tests novel user-independent strategies for addressing aspects 1) and 2) above, for cylinders, cones and ellipsoids -- A conjecture for the calculation of the distance point-ellipsoid is also proposed -- Our strategies produce good initial guesses for F and fast fitting error estimation for F, leading to an agile and robust optimization algorithm -- Ongoing work addresses the fitting of free-form parametric surfaces to Sapplication/pdfengScientific Research PublishingAmerican Journal of Computational Mathematics, Volume 3, Issue 1A, pp 18-26http://www.scirp.org/journal/PaperInformation.aspx?PaperID=30864Acceso abiertohttp://purl.org/coar/access_right/c_abf2Fitting of Analytic Surfaces to Noisy Point Cloudsinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1CONO (MATEMÁTICAS)CILINDROSOPTIMIZACIÓN MATEMÁTICAREALIDAD VIRTUALFUNCIONES ANALÍTICASPROCESAMIENTO DE IMÁGENESMÉTODOS ITERATIVOS (MATEMÁTICAS)ConeCylindersMathematical optimizationVirtual realityAnalytic functionsImage processingIterative methods (mathematics)ConeCylindersMathematical optimizationVirtual realityAnalytic functionsImage processingIterative methods (mathematics)Sistemas CAD/CAMUniversidad EAFIT. Departamento de Ingeniería MecánicaRuíz, ÓscarArroyave, SantiagoAcosta, DiegoLaboratorio CAD/CAM/CAEAmerican Journal of Computational MathematicsAmerican Journal of Computational Mathematics31A1826AJCMLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/7a4252d2-ae1a-439a-8d69-852e500d3dd0/download76025f86b095439b7ac65b367055d40cMD51ORIGINALFitting-of-Analytic.pdfFitting-of-Analytic.pdfOpenAccess versionapplication/pdf1539344https://repository.eafit.edu.co/bitstreams/5793fcee-c4bd-4980-b549-8b1b5022dfd8/downloadfed7771afb8ed4b0bc90a2dbfaf22c1bMD5210784/9685oai:repository.eafit.edu.co:10784/96852021-09-03 15:43:52.269open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK