Fitting of Analytic Surfaces to Noisy Point Clouds
Fitting -continuous or superior surfaces to a set of points sampled on a 2-manifold is central to reverse engi- neering, computer aided geometric modeling, entertaining, modeling of art heritage, etc -- This article addresses the fit- ting of analytic (ellipsoid, cones, cylinders) surfaces in genera...
- Autores:
-
Ruíz, Óscar
Arroyave, Santiago
Acosta, Diego
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/9685
- Acceso en línea:
- http://hdl.handle.net/10784/9685
- Palabra clave:
- CONO (MATEMÁTICAS)
CILINDROS
OPTIMIZACIÓN MATEMÁTICA
REALIDAD VIRTUAL
FUNCIONES ANALÍTICAS
PROCESAMIENTO DE IMÁGENES
MÉTODOS ITERATIVOS (MATEMÁTICAS)
Cone
Cylinders
Mathematical optimization
Virtual reality
Analytic functions
Image processing
Iterative methods (mathematics)
Cone
Cylinders
Mathematical optimization
Virtual reality
Analytic functions
Image processing
Iterative methods (mathematics)
Sistemas CAD/CAM
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_1e4de3d84cc54eb675ce63e5d521d719 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/9685 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Fitting of Analytic Surfaces to Noisy Point Clouds |
title |
Fitting of Analytic Surfaces to Noisy Point Clouds |
spellingShingle |
Fitting of Analytic Surfaces to Noisy Point Clouds CONO (MATEMÁTICAS) CILINDROS OPTIMIZACIÓN MATEMÁTICA REALIDAD VIRTUAL FUNCIONES ANALÍTICAS PROCESAMIENTO DE IMÁGENES MÉTODOS ITERATIVOS (MATEMÁTICAS) Cone Cylinders Mathematical optimization Virtual reality Analytic functions Image processing Iterative methods (mathematics) Cone Cylinders Mathematical optimization Virtual reality Analytic functions Image processing Iterative methods (mathematics) Sistemas CAD/CAM |
title_short |
Fitting of Analytic Surfaces to Noisy Point Clouds |
title_full |
Fitting of Analytic Surfaces to Noisy Point Clouds |
title_fullStr |
Fitting of Analytic Surfaces to Noisy Point Clouds |
title_full_unstemmed |
Fitting of Analytic Surfaces to Noisy Point Clouds |
title_sort |
Fitting of Analytic Surfaces to Noisy Point Clouds |
dc.creator.fl_str_mv |
Ruíz, Óscar Arroyave, Santiago Acosta, Diego |
dc.contributor.department.spa.fl_str_mv |
Universidad EAFIT. Departamento de Ingeniería Mecánica |
dc.contributor.author.none.fl_str_mv |
Ruíz, Óscar Arroyave, Santiago Acosta, Diego |
dc.contributor.researchgroup.spa.fl_str_mv |
Laboratorio CAD/CAM/CAE |
dc.subject.lemb.spa.fl_str_mv |
CONO (MATEMÁTICAS) CILINDROS OPTIMIZACIÓN MATEMÁTICA REALIDAD VIRTUAL FUNCIONES ANALÍTICAS PROCESAMIENTO DE IMÁGENES MÉTODOS ITERATIVOS (MATEMÁTICAS) |
topic |
CONO (MATEMÁTICAS) CILINDROS OPTIMIZACIÓN MATEMÁTICA REALIDAD VIRTUAL FUNCIONES ANALÍTICAS PROCESAMIENTO DE IMÁGENES MÉTODOS ITERATIVOS (MATEMÁTICAS) Cone Cylinders Mathematical optimization Virtual reality Analytic functions Image processing Iterative methods (mathematics) Cone Cylinders Mathematical optimization Virtual reality Analytic functions Image processing Iterative methods (mathematics) Sistemas CAD/CAM |
dc.subject.keyword.spa.fl_str_mv |
Cone Cylinders Mathematical optimization Virtual reality Analytic functions Image processing Iterative methods (mathematics) |
dc.subject.keyword.eng.fl_str_mv |
Cone Cylinders Mathematical optimization Virtual reality Analytic functions Image processing Iterative methods (mathematics) |
dc.subject.keyword..keywor.fl_str_mv |
Sistemas CAD/CAM |
description |
Fitting -continuous or superior surfaces to a set of points sampled on a 2-manifold is central to reverse engi- neering, computer aided geometric modeling, entertaining, modeling of art heritage, etc -- This article addresses the fit- ting of analytic (ellipsoid, cones, cylinders) surfaces in general position in -- Currently, the state of the art presents limitations in 1) automatically finding an initial guess for the analytic surface F sought, and 2) economically estimat- ing the geometric distance between a point of and the analytic surface SF -- These issues are central in estimating an analytic surface which minimizes its accumulated distances to the point set -- In response to this situation, this article presents and tests novel user-independent strategies for addressing aspects 1) and 2) above, for cylinders, cones and ellipsoids -- A conjecture for the calculation of the distance point-ellipsoid is also proposed -- Our strategies produce good initial guesses for F and fast fitting error estimation for F, leading to an agile and robust optimization algorithm -- Ongoing work addresses the fitting of free-form parametric surfaces to S |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013-04 |
dc.date.available.none.fl_str_mv |
2016-11-18T22:20:00Z |
dc.date.accessioned.none.fl_str_mv |
2016-11-18T22:20:00Z |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/article article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2161-1203 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/9685 |
dc.identifier.doi.none.fl_str_mv |
10.4236/ajcm.2013.31A004 |
identifier_str_mv |
2161-1203 10.4236/ajcm.2013.31A004 |
url |
http://hdl.handle.net/10784/9685 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
American Journal of Computational Mathematics, Volume 3, Issue 1A, pp 18-26 |
dc.relation.uri.none.fl_str_mv |
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=30864 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Scientific Research Publishing |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/7a4252d2-ae1a-439a-8d69-852e500d3dd0/download https://repository.eafit.edu.co/bitstreams/5793fcee-c4bd-4980-b549-8b1b5022dfd8/download |
bitstream.checksum.fl_str_mv |
76025f86b095439b7ac65b367055d40c fed7771afb8ed4b0bc90a2dbfaf22c1b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110142158864384 |
spelling |
2016-11-18T22:20:00Z2013-042016-11-18T22:20:00Z2161-1203http://hdl.handle.net/10784/968510.4236/ajcm.2013.31A004Fitting -continuous or superior surfaces to a set of points sampled on a 2-manifold is central to reverse engi- neering, computer aided geometric modeling, entertaining, modeling of art heritage, etc -- This article addresses the fit- ting of analytic (ellipsoid, cones, cylinders) surfaces in general position in -- Currently, the state of the art presents limitations in 1) automatically finding an initial guess for the analytic surface F sought, and 2) economically estimat- ing the geometric distance between a point of and the analytic surface SF -- These issues are central in estimating an analytic surface which minimizes its accumulated distances to the point set -- In response to this situation, this article presents and tests novel user-independent strategies for addressing aspects 1) and 2) above, for cylinders, cones and ellipsoids -- A conjecture for the calculation of the distance point-ellipsoid is also proposed -- Our strategies produce good initial guesses for F and fast fitting error estimation for F, leading to an agile and robust optimization algorithm -- Ongoing work addresses the fitting of free-form parametric surfaces to Sapplication/pdfengScientific Research PublishingAmerican Journal of Computational Mathematics, Volume 3, Issue 1A, pp 18-26http://www.scirp.org/journal/PaperInformation.aspx?PaperID=30864Acceso abiertohttp://purl.org/coar/access_right/c_abf2Fitting of Analytic Surfaces to Noisy Point Cloudsinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1CONO (MATEMÁTICAS)CILINDROSOPTIMIZACIÓN MATEMÁTICAREALIDAD VIRTUALFUNCIONES ANALÍTICASPROCESAMIENTO DE IMÁGENESMÉTODOS ITERATIVOS (MATEMÁTICAS)ConeCylindersMathematical optimizationVirtual realityAnalytic functionsImage processingIterative methods (mathematics)ConeCylindersMathematical optimizationVirtual realityAnalytic functionsImage processingIterative methods (mathematics)Sistemas CAD/CAMUniversidad EAFIT. Departamento de Ingeniería MecánicaRuíz, ÓscarArroyave, SantiagoAcosta, DiegoLaboratorio CAD/CAM/CAEAmerican Journal of Computational MathematicsAmerican Journal of Computational Mathematics31A1826AJCMLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/7a4252d2-ae1a-439a-8d69-852e500d3dd0/download76025f86b095439b7ac65b367055d40cMD51ORIGINALFitting-of-Analytic.pdfFitting-of-Analytic.pdfOpenAccess versionapplication/pdf1539344https://repository.eafit.edu.co/bitstreams/5793fcee-c4bd-4980-b549-8b1b5022dfd8/downloadfed7771afb8ed4b0bc90a2dbfaf22c1bMD5210784/9685oai:repository.eafit.edu.co:10784/96852021-09-03 15:43:52.269open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK |