Fitting of Analytic Surfaces to Noisy Point Clouds
Fitting -continuous or superior surfaces to a set of points sampled on a 2-manifold is central to reverse engi- neering, computer aided geometric modeling, entertaining, modeling of art heritage, etc -- This article addresses the fit- ting of analytic (ellipsoid, cones, cylinders) surfaces in genera...
- Autores:
-
Ruíz, Óscar
Arroyave, Santiago
Acosta, Diego
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/9685
- Acceso en línea:
- http://hdl.handle.net/10784/9685
- Palabra clave:
- CONO (MATEMÁTICAS)
CILINDROS
OPTIMIZACIÓN MATEMÁTICA
REALIDAD VIRTUAL
FUNCIONES ANALÍTICAS
PROCESAMIENTO DE IMÁGENES
MÉTODOS ITERATIVOS (MATEMÁTICAS)
Cone
Cylinders
Mathematical optimization
Virtual reality
Analytic functions
Image processing
Iterative methods (mathematics)
Cone
Cylinders
Mathematical optimization
Virtual reality
Analytic functions
Image processing
Iterative methods (mathematics)
Sistemas CAD/CAM
- Rights
- License
- Acceso abierto
Summary: | Fitting -continuous or superior surfaces to a set of points sampled on a 2-manifold is central to reverse engi- neering, computer aided geometric modeling, entertaining, modeling of art heritage, etc -- This article addresses the fit- ting of analytic (ellipsoid, cones, cylinders) surfaces in general position in -- Currently, the state of the art presents limitations in 1) automatically finding an initial guess for the analytic surface F sought, and 2) economically estimat- ing the geometric distance between a point of and the analytic surface SF -- These issues are central in estimating an analytic surface which minimizes its accumulated distances to the point set -- In response to this situation, this article presents and tests novel user-independent strategies for addressing aspects 1) and 2) above, for cylinders, cones and ellipsoids -- A conjecture for the calculation of the distance point-ellipsoid is also proposed -- Our strategies produce good initial guesses for F and fast fitting error estimation for F, leading to an agile and robust optimization algorithm -- Ongoing work addresses the fitting of free-form parametric surfaces to S |
---|