Estimation of banking technology under credit uncertainty
Credit risk is crucial to understanding banks’ production technology and should be explicitly accounted for when modeling the latter. The banking literature has largely accounted for risk by using ex-post realizations of banks’ uncertain outputs and the variables intended to capture risk. This is eq...
- Autores:
-
Malikov, Emir
Restrepo, Diego A.
Kumbhakar, Subal C.
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/1001
- Acceso en línea:
- http://hdl.handle.net/10784/1001
- Palabra clave:
- Ex-Ante Cost Function
Production Uncertainty
Productivity
Returns to Scale
Risk
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_19fec6c8d2df9b910640023fc06cb070 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/1001 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2013-07-11T21:28:39Z2013-05-152013-07-11T21:28:39Zhttp://hdl.handle.net/10784/1001C10D81G21Credit risk is crucial to understanding banks’ production technology and should be explicitly accounted for when modeling the latter. The banking literature has largely accounted for risk by using ex-post realizations of banks’ uncertain outputs and the variables intended to capture risk. This is equivalent to estimating an ex-post realization of bank’s production technology which, however, may not reflect optimality conditions that banks seek to satisfy under uncertainty. The ex-post estimates of technology are likely to be biased and inconsistent, and one thus may call into question the reliability of the results regarding banks’ technological characteristics broadly reported in the literature. However, the extent to which these concerns are relevant for policy analysis is an empirical question. In this paper, we offer an alternative methodology to estimate banks’ production technology based on the ex-ante cost function. We model credit uncertainty explicitly by recognizing that bank managers minimize costs subject to given expected outputs and credit risk. We estimate unobservable expected outputs and associated credit risk levels from banks’ supply functions via nonparametric kernel methods. We apply this framework to estimate production technology of U.S. commercial banks during the period from 2001 to 2010 and contrast the new estimates with those based on the ex-post models widely employed in the literature.engUniversidad EAFITEscuela de Economía y FinanzasEstimation of banking technology under credit uncertaintyworkingPaperinfo:eu-repo/semantics/workingPaperDocumento de trabajo de investigacióndrafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_8042Acceso abiertohttp://purl.org/coar/access_right/c_abf2Ex-Ante Cost FunctionProduction UncertaintyProductivityReturns to ScaleRiskMalikov, EmirRestrepo, Diego A.Kumbhakar, Subal C.emalikov@binghamton.edudrestr16@eafit.edu.cokkar@binghamton.eduORIGINAL2013_19_Diego_A_Restrepo_New_Version.pdf2013_19_Diego_A_Restrepo_New_Version.pdfapplication/pdf826612https://repository.eafit.edu.co/bitstreams/500536d6-89aa-47f9-b2a5-c70a89f557b8/download71b43b69eb5e8b0c606dd30276934020MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-8968https://repository.eafit.edu.co/bitstreams/6827b8d4-97c3-4541-bac8-e3ec6fa14f2e/download4cc960a42e07fca3808fbd6b90ab2a1fMD5210784/1001oai:repository.eafit.edu.co:10784/10012024-03-05 14:06:22.938open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coQXV0b3JpemFjacOzbiBkZSBQdWJsaWNhY2nDs24gZGUgVmVyc2nDs24gZWxlY3Ryw7NuaWNhIGRlIGxhIFRlc2lzIG8gcHJveWVjdG8gZGUgR3JhZG8uClBvciBtZWRpbyBkZSBlc3RlIGVzY3JpdG8gYXV0b3Jpem8gZW4gZm9ybWEgZ3JhdHVpdGEgeSBwb3IgdGllbXBvIGluZGVmaW5pZG8gYSBsYSBVbml2ZXJzaWRhZCBFQUZJVCBwYXJhIHNpdHVhciBlbiBsYSBCaWJsaW90ZWNhIEx1aXMgRWNoYXZhcnLDrWEgVmlsbGVnYXMgdW4gZWplbXBsYXIgZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28uCgpJZ3VhbG1lbnRlIGF1dG9yaXpvIGVuIGZvcm1hIGdyYXR1aXRhIHkgcG9yIHRpZW1wbyBpbmRlZmluaWRvIGEgcHVibGljYXIgZW4gZm9ybWEgZWxlY3Ryw7NuaWNhIG8gZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vd3d3LmVhZml0LmVkdS5jby9iaWJsaW90ZWNhLiAKClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgeWEgc2VhIGxhIGJpYmxpb3RlY2EgbyBlbiBtZWRpbyBlbGVjdHLDs25pY28gcG9kcsOhIGNvcGlhciBhcGFydGVzIGRlbCB0ZXh0byBjaXRhbmRvIHNpZW1wcmUgbGEgZnVlbnRlcywgZXMgZGVjaXIgZWwgdGl0dWxvIGRlbCB0cmFiYWpvIHkgZWwgYXV0b3IuIEVzdGEgYXV0b3JpemFjacOzbiBubyBpbXBsaWNhIHJlbnVuY2lhIGEgbGEgZmFjdWx0YWQgcXVlIHRlbmdvIGRlIHB1YmxpY2FyIHRvdGFsIG8gcGFyY2lhbG1lbnRlCmxhIG9icmEuCgpMYSBVbml2ZXJzaWRhZCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgZGUgdGVyY2Vyb3MgcXVlIGludm9xdWVuIGF1dG9yw61hIGRlIGxhIG9icmEgcXVlIHByZXNlbnRvLgo= |
dc.title.eng.fl_str_mv |
Estimation of banking technology under credit uncertainty |
title |
Estimation of banking technology under credit uncertainty |
spellingShingle |
Estimation of banking technology under credit uncertainty Ex-Ante Cost Function Production Uncertainty Productivity Returns to Scale Risk |
title_short |
Estimation of banking technology under credit uncertainty |
title_full |
Estimation of banking technology under credit uncertainty |
title_fullStr |
Estimation of banking technology under credit uncertainty |
title_full_unstemmed |
Estimation of banking technology under credit uncertainty |
title_sort |
Estimation of banking technology under credit uncertainty |
dc.creator.fl_str_mv |
Malikov, Emir Restrepo, Diego A. Kumbhakar, Subal C. |
dc.contributor.author.none.fl_str_mv |
Malikov, Emir Restrepo, Diego A. Kumbhakar, Subal C. |
dc.subject.keyword.eng.fl_str_mv |
Ex-Ante Cost Function Production Uncertainty Productivity Returns to Scale Risk |
topic |
Ex-Ante Cost Function Production Uncertainty Productivity Returns to Scale Risk |
description |
Credit risk is crucial to understanding banks’ production technology and should be explicitly accounted for when modeling the latter. The banking literature has largely accounted for risk by using ex-post realizations of banks’ uncertain outputs and the variables intended to capture risk. This is equivalent to estimating an ex-post realization of bank’s production technology which, however, may not reflect optimality conditions that banks seek to satisfy under uncertainty. The ex-post estimates of technology are likely to be biased and inconsistent, and one thus may call into question the reliability of the results regarding banks’ technological characteristics broadly reported in the literature. However, the extent to which these concerns are relevant for policy analysis is an empirical question. In this paper, we offer an alternative methodology to estimate banks’ production technology based on the ex-ante cost function. We model credit uncertainty explicitly by recognizing that bank managers minimize costs subject to given expected outputs and credit risk. We estimate unobservable expected outputs and associated credit risk levels from banks’ supply functions via nonparametric kernel methods. We apply this framework to estimate production technology of U.S. commercial banks during the period from 2001 to 2010 and contrast the new estimates with those based on the ex-post models widely employed in the literature. |
publishDate |
2013 |
dc.date.available.none.fl_str_mv |
2013-07-11T21:28:39Z |
dc.date.issued.none.fl_str_mv |
2013-05-15 |
dc.date.accessioned.none.fl_str_mv |
2013-07-11T21:28:39Z |
dc.type.eng.fl_str_mv |
workingPaper info:eu-repo/semantics/workingPaper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.local.spa.fl_str_mv |
Documento de trabajo de investigación |
dc.type.hasVersion.eng.fl_str_mv |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/1001 |
dc.identifier.jel.none.fl_str_mv |
C10 D81 G21 |
url |
http://hdl.handle.net/10784/1001 |
identifier_str_mv |
C10 D81 G21 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.department.spa.fl_str_mv |
Escuela de Economía y Finanzas |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/500536d6-89aa-47f9-b2a5-c70a89f557b8/download https://repository.eafit.edu.co/bitstreams/6827b8d4-97c3-4541-bac8-e3ec6fa14f2e/download |
bitstream.checksum.fl_str_mv |
71b43b69eb5e8b0c606dd30276934020 4cc960a42e07fca3808fbd6b90ab2a1f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110362722631680 |