Error estimates for a multidimensional meshfree Galerkin method with diffuse derivatives and stabilization

A meshfree method with diffuse derivatives and a penalty stabilization is developed. An error analysis for the approximation of the solution of a general elliptic differential equation, in several dimensions, with Neumann boundary conditions is provided. Theoretical and numerical results show that the...

Full description

Autores:
Osorio, Mauricio
French, Donald
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14410
Acceso en línea:
http://hdl.handle.net/10784/14410
Palabra clave:
Meshfree Methods
Diffuse Derivatives
Moving Least Squares
Diffuse Element Method And Error Estimates
Métodos Sin Malla
Di ff Usa Derivadas
Mueve Mínimos Cuadrados
Di ff Usa Método De Elemento Y Estimaciones De Error
Rights
License
Copyright (c) 2013 Mauricio Osorio, Donald French
Description
Summary:A meshfree method with diffuse derivatives and a penalty stabilization is developed. An error analysis for the approximation of the solution of a general elliptic differential equation, in several dimensions, with Neumann boundary conditions is provided. Theoretical and numerical results show that the approximation error and the convergence rate are better than the diffuse element method.