Double Fourier analysis for Emotion Identification in Voiced Speech
We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech -- Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions -- A spectrogram of the voice signal is obtained performing a short...
- Autores:
-
Sierra-Sosa, D
Bastidas, M
Ortiz P., D.
Quintero, O.L.
Sierra-Sosa, D
Bastidas, M
Ortiz P., D.
Quintero, O.L.
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/8375
- Acceso en línea:
- http://hdl.handle.net/10784/8375
- Palabra clave:
- Transformadas de Wavelet
Procesamiento digital de voz
Morfología matemática
ANÁLISIS ESPECTRAL
ANÁLISIS DE FOURIER
PROCESAMIENTO DE SEÑALES
SISTEMAS DE PROCESAMIENTO DE LA VOZ
TRANSFORMACIONES (MATEMÁTICAS)
PRINCIPIO DE INCERTIDUMBRE DE HEISENBERG
Spectrum analysis
Fourier analysis
Signal processing
Speech processing systems
Transformations (mathematics)
Heisenberg uncertainty principle
Spectrum analysis
Fourier analysis
Signal processing
Speech processing systems
Transformations (mathematics)
Heisenberg uncertainty principle
Transformadas de Wavelet
Procesamiento digital de voz
Morfología matemática
- Rights
- License
- Acceso abierto
Summary: | We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech -- Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions -- A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds -- Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions -- Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it -- Finally features related with emotions in voiced speech are extracted and presented |
---|