On the Biharmonic Equation

This article provides a comprehensive introduction to the biharmonic equation, focusing on its origins in elasticity and fluid mechanics. We derive the equation from physical principles of linear deformations and Stokes flow, illustrating its applicability in modeling phenomena such as plate bending...

Full description

Autores:
Fierro, A.
Posada, C.
Sanchez, J.J
Martinod T.
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/34774
Acceso en línea:
https://hdl.handle.net/10784/34774
Palabra clave:
Ecuación Biharmónica
Soluciones Radiales
Separación de Variables
Biharmonic Equation
Radial Solutions
Separation of Variables
Rights
License
Acceso abierto
id REPOEAFIT2_1210b5582fdf70eb9ce78d840268d577
oai_identifier_str oai:repository.eafit.edu.co:10784/34774
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2024-11-06T21:43:22Z20242024-11-06T21:43:22Zhttps://hdl.handle.net/10784/34774This article provides a comprehensive introduction to the biharmonic equation, focusing on its origins in elasticity and fluid mechanics. We derive the equation from physical principles of linear deformations and Stokes flow, illustrating its applicability in modeling phenomena such as plate bending and stream functions in viscous media. Solutions are developed in polar and spherical coordinates with radial symmetry, including boundary conditions for spherical domains, as well as in general 2D Cartesian coordinates and the biharmonic wave equation for structural mechanics. Throughout, we highlight practical applications across engineering fields, showcasing the biharmonic equation’s role in predicting stress, displacement, and flow patterns.Este artículo proporciona una introducción completa a la ecuación biharmónica, centrándose en sus orígenes en la elasticidad y la mecánica de fluidos. Derivamos la ecuación a partir de principios físicos de deformaciones lineales y flujo de Stokes, ilustrando su aplicabilidad en el modelado de fenómenos como la flexión de placas y funciones de corriente en medios viscosos. Se desarrollan soluciones en coordenadas polares y esféricas con simetría radial, incluyendo condiciones de contorno para dominios esféricos, así como en coordenadas cartesianas 2D generales y la ecuación de onda biharmónica para la mecánica estructural. A lo largo del texto, destacamos aplicaciones prácticas en diversos campos de la ingeniería, mostrando el papel de la ecuación biharmónica en la predicción de tensiones, desplazamientos y patrones de flujo.application/pdfengOn the Biharmonic EquationSobre la Ecuación BiharmónicaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Acceso abiertohttp://purl.org/coar/access_right/c_abf2Ecuación BiharmónicaSoluciones RadialesSeparación de VariablesBiharmonic EquationRadial SolutionsSeparation of VariablesFierro, A.f993250d-5282-44d9-b637-5f087720cfe0-1Posada, C.bc01a6a4-6248-4058-90c0-8701e57f49cb-1Sanchez, J.J43856983-8c01-4b7a-9156-374eb522b5f6-1Martinod T.ae1a3589-6291-4c5e-9b4f-185bcf7fe7b2-1Universidad EAFITCuadernos de Ingeniería Matemática4ORIGINALSobre la Ecuación Biharmónica.pdfArtículo Principalapplication/pdf616391https://repository.eafit.edu.co/bitstreams/b178a4eb-a816-47b2-8bae-699340ebfa7f/downloadb22499c7b65c1971a7b7d103895718ccMD51LICENSELicense.txtLicensetext/plain2584https://repository.eafit.edu.co/bitstreams/afde2dd6-05c8-439d-b2a1-505428953b80/downloaddb71ab3fdf552b62aa0a746cef2840e4MD52THUMBNAILPortada.pngPortadaimage/png1747211https://repository.eafit.edu.co/bitstreams/b8abe796-df1e-4798-ada5-03b78c2b232a/download5bc3017473813e875879dcd10727c474MD5310784/34774oai:repository.eafit.edu.co:10784/347742024-12-04 11:47:37.261open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv On the Biharmonic Equation
dc.title.spa.fl_str_mv Sobre la Ecuación Biharmónica
title On the Biharmonic Equation
spellingShingle On the Biharmonic Equation
Ecuación Biharmónica
Soluciones Radiales
Separación de Variables
Biharmonic Equation
Radial Solutions
Separation of Variables
title_short On the Biharmonic Equation
title_full On the Biharmonic Equation
title_fullStr On the Biharmonic Equation
title_full_unstemmed On the Biharmonic Equation
title_sort On the Biharmonic Equation
dc.creator.fl_str_mv Fierro, A.
Posada, C.
Sanchez, J.J
Martinod T.
dc.contributor.author.none.fl_str_mv Fierro, A.
Posada, C.
Sanchez, J.J
Martinod T.
dc.contributor.affiliation.spa.fl_str_mv Universidad EAFIT
dc.subject.keyword.eng.fl_str_mv Ecuación Biharmónica
Soluciones Radiales
Separación de Variables
topic Ecuación Biharmónica
Soluciones Radiales
Separación de Variables
Biharmonic Equation
Radial Solutions
Separation of Variables
dc.subject.keyword.spa.fl_str_mv Biharmonic Equation
Radial Solutions
Separation of Variables
description This article provides a comprehensive introduction to the biharmonic equation, focusing on its origins in elasticity and fluid mechanics. We derive the equation from physical principles of linear deformations and Stokes flow, illustrating its applicability in modeling phenomena such as plate bending and stream functions in viscous media. Solutions are developed in polar and spherical coordinates with radial symmetry, including boundary conditions for spherical domains, as well as in general 2D Cartesian coordinates and the biharmonic wave equation for structural mechanics. Throughout, we highlight practical applications across engineering fields, showcasing the biharmonic equation’s role in predicting stress, displacement, and flow patterns.
publishDate 2024
dc.date.available.none.fl_str_mv 2024-11-06T21:43:22Z
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2024-11-06T21:43:22Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.local.spa.fl_str_mv Artículo
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10784/34774
url https://hdl.handle.net/10784/34774
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.eng.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/b178a4eb-a816-47b2-8bae-699340ebfa7f/download
https://repository.eafit.edu.co/bitstreams/afde2dd6-05c8-439d-b2a1-505428953b80/download
https://repository.eafit.edu.co/bitstreams/b8abe796-df1e-4798-ada5-03b78c2b232a/download
bitstream.checksum.fl_str_mv b22499c7b65c1971a7b7d103895718cc
db71ab3fdf552b62aa0a746cef2840e4
5bc3017473813e875879dcd10727c474
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1818102388689469440