Finite Element Modeling of Composite Materials using Kinematic Constraints
The purpose of this article is to present simulations of the behavior of composite materials based on kinematic restrictions between the same fibers and between the fibers and the surrounding resin. In the literature review, the authors have found that kinematic restrictions have not been fully expl...
- Autores:
-
E. Ruiz, Oscar
Barschke, Merlin
Uribe, David
Jensen, Jens
López, Carlos
- Tipo de recurso:
- Fecha de publicación:
- 2009
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14505
- Acceso en línea:
- http://hdl.handle.net/10784/14505
- Palabra clave:
- Composite Materials
Geometric Restrictions
Restrictions
Kinematics
Materiales Compuestos
Restricciones Geométricas
Restricciones
Cinemáticas
- Rights
- License
- Copyright (c) 2009 Oscar E. Ruiz, Merlin Barschke, David Uribe, Jens Jensen, Carlos López
id |
REPOEAFIT2_115725fe24ca1b0a406df687eb83b374 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/14505 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Finite Element Modeling of Composite Materials using Kinematic Constraints |
dc.title.spa.fl_str_mv |
Modelado de Materiales Compuestos por Elementos Finitos usando Restricciones Cinemáticas |
title |
Finite Element Modeling of Composite Materials using Kinematic Constraints |
spellingShingle |
Finite Element Modeling of Composite Materials using Kinematic Constraints Composite Materials Geometric Restrictions Restrictions Kinematics Materiales Compuestos Restricciones Geométricas Restricciones Cinemáticas |
title_short |
Finite Element Modeling of Composite Materials using Kinematic Constraints |
title_full |
Finite Element Modeling of Composite Materials using Kinematic Constraints |
title_fullStr |
Finite Element Modeling of Composite Materials using Kinematic Constraints |
title_full_unstemmed |
Finite Element Modeling of Composite Materials using Kinematic Constraints |
title_sort |
Finite Element Modeling of Composite Materials using Kinematic Constraints |
dc.creator.fl_str_mv |
E. Ruiz, Oscar Barschke, Merlin Uribe, David Jensen, Jens López, Carlos |
dc.contributor.author.spa.fl_str_mv |
E. Ruiz, Oscar Barschke, Merlin Uribe, David Jensen, Jens López, Carlos |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad EAFIT |
dc.subject.keyword.eng.fl_str_mv |
Composite Materials Geometric Restrictions Restrictions Kinematics |
topic |
Composite Materials Geometric Restrictions Restrictions Kinematics Materiales Compuestos Restricciones Geométricas Restricciones Cinemáticas |
dc.subject.keyword.spa.fl_str_mv |
Materiales Compuestos Restricciones Geométricas Restricciones Cinemáticas |
description |
The purpose of this article is to present simulations of the behavior of composite materials based on kinematic restrictions between the same fibers and between the fibers and the surrounding resin. In the literature review, the authors have found that kinematic restrictions have not been fully exploited to model composite materials, probably due to their high computational cost. The purpose of this article is to expose the implementation and results of such a model, using Finite Element Analysis of prescribed geometric constraints to the resin and fiber nodes. Analytical descriptions of the behavior of composite materials rarely appear. Many approaches to describe composite materials in layers are based on the theory of functions C1Z and C0 Z, such as the Classical Layer Theory (CLT). These theories of functions contain significant simplifications of the material, especially for woven compounds. A hybrid approach to modeling composite materials with Finite Elements (FEA) was developed by Sidhu and Averill and adapted by Li and Sherwood for composite materials woven with glass polypropylene. |
publishDate |
2009 |
dc.date.issued.none.fl_str_mv |
2009-12-01 |
dc.date.available.none.fl_str_mv |
2019-11-22T19:06:21Z |
dc.date.accessioned.none.fl_str_mv |
2019-11-22T19:06:21Z |
dc.date.none.fl_str_mv |
2009-12-01 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/14505 |
identifier_str_mv |
2256-4314 1794-9165 |
url |
http://hdl.handle.net/10784/14505 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/62 |
dc.relation.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/62 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2009 Oscar E. Ruiz, Merlin Barschke, David Uribe, Jens Jensen, Carlos López |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright (c) 2009 Oscar E. Ruiz, Merlin Barschke, David Uribe, Jens Jensen, Carlos López Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia; Vol 5, No 10 (2009) |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/e7cc4e8f-6bcd-4d86-8975-9345f00bb66b/download https://repository.eafit.edu.co/bitstreams/26067ca2-c194-4b6e-8edb-9d89cff88958/download https://repository.eafit.edu.co/bitstreams/39337fd3-68c6-4c2b-b350-6295110c26c3/download |
bitstream.checksum.fl_str_mv |
da9b21a5c7e00c7f1127cef8e97035e0 516d81ff13a37b1e3b333836a1d29c58 d05bf5aaa7757ebf732a53a9686a8d4c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110217526312960 |
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2009-12-012019-11-22T19:06:21Z2009-12-012019-11-22T19:06:21Z2256-43141794-9165http://hdl.handle.net/10784/14505The purpose of this article is to present simulations of the behavior of composite materials based on kinematic restrictions between the same fibers and between the fibers and the surrounding resin. In the literature review, the authors have found that kinematic restrictions have not been fully exploited to model composite materials, probably due to their high computational cost. The purpose of this article is to expose the implementation and results of such a model, using Finite Element Analysis of prescribed geometric constraints to the resin and fiber nodes. Analytical descriptions of the behavior of composite materials rarely appear. Many approaches to describe composite materials in layers are based on the theory of functions C1Z and C0 Z, such as the Classical Layer Theory (CLT). These theories of functions contain significant simplifications of the material, especially for woven compounds. A hybrid approach to modeling composite materials with Finite Elements (FEA) was developed by Sidhu and Averill and adapted by Li and Sherwood for composite materials woven with glass polypropylene.El propósito de este artículo es presentar simulaciones del comportamiento de materiales compuestos basado en restricciones cinemáticas entre las mismas fibras y entre las fibras y la resina circundante. En la revisión de literatura, los autores han encontrado que las restricciones cinemáticas no han sido plenamente explotadas para modelar materiales compuestos, probablemente debido a su alto costo computacional. El propósito de este articulo es exponer la implementación y resultados de tal modelo, usando Análisis por Elementos Finitos de restricciones geométricas prescritas a los nodos de la resina y las fibras. Las descripciones analíticas del comportamiento de materiales compuestos raramente aparecen. Muchas aproximaciones para describir materiales compuestos en capas son basadas en la teoría de funciones C1Z y C0 Z, tal como la Teoría Clásica de Capas (CLT). Estas teorías de funciones contienen significativas simplificaciones del material, especialmente para compuestos tejidos. Una aproximación hibrida para modelar materiales compuestos con Elementos Finitos (FEA) fue desarrollada por Sidhu y Averill y adaptada por Li y Sherwood para materiales compuestos tejidos con polipropileno de vidrio.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/62http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/62Copyright (c) 2009 Oscar E. Ruiz, Merlin Barschke, David Uribe, Jens Jensen, Carlos LópezAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 5, No 10 (2009)Finite Element Modeling of Composite Materials using Kinematic ConstraintsModelado de Materiales Compuestos por Elementos Finitos usando Restricciones Cinemáticasarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Composite MaterialsGeometric RestrictionsRestrictionsKinematicsMateriales CompuestosRestricciones GeométricasRestriccionesCinemáticasE. Ruiz, OscarBarschke, MerlinUribe, DavidJensen, JensLópez, CarlosUniversidad EAFITIngeniería y Ciencia510133154ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/e7cc4e8f-6bcd-4d86-8975-9345f00bb66b/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL7.pdf7.pdfTexto completo PDFapplication/pdf306209https://repository.eafit.edu.co/bitstreams/26067ca2-c194-4b6e-8edb-9d89cff88958/download516d81ff13a37b1e3b333836a1d29c58MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html372https://repository.eafit.edu.co/bitstreams/39337fd3-68c6-4c2b-b350-6295110c26c3/downloadd05bf5aaa7757ebf732a53a9686a8d4cMD5310784/14505oai:repository.eafit.edu.co:10784/145052020-03-02 22:36:44.511open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |