Finite Element Modeling of Composite Materials using Kinematic Constraints

The purpose of this article is to present simulations of the behavior of composite materials based on kinematic restrictions between the same fibers and between the fibers and the surrounding resin. In the literature review, the authors have found that kinematic restrictions have not been fully expl...

Full description

Autores:
E. Ruiz, Oscar
Barschke, Merlin
Uribe, David
Jensen, Jens
López, Carlos
Tipo de recurso:
Fecha de publicación:
2009
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14505
Acceso en línea:
http://hdl.handle.net/10784/14505
Palabra clave:
Composite Materials
Geometric Restrictions
Restrictions
Kinematics
Materiales Compuestos
Restricciones Geométricas
Restricciones
Cinemáticas
Rights
License
Copyright (c) 2009 Oscar E. Ruiz, Merlin Barschke, David Uribe, Jens Jensen, Carlos López
id REPOEAFIT2_115725fe24ca1b0a406df687eb83b374
oai_identifier_str oai:repository.eafit.edu.co:10784/14505
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv Finite Element Modeling of Composite Materials using Kinematic Constraints
dc.title.spa.fl_str_mv Modelado de Materiales Compuestos por Elementos Finitos usando Restricciones Cinemáticas
title Finite Element Modeling of Composite Materials using Kinematic Constraints
spellingShingle Finite Element Modeling of Composite Materials using Kinematic Constraints
Composite Materials
Geometric Restrictions
Restrictions
Kinematics
Materiales Compuestos
Restricciones Geométricas
Restricciones
Cinemáticas
title_short Finite Element Modeling of Composite Materials using Kinematic Constraints
title_full Finite Element Modeling of Composite Materials using Kinematic Constraints
title_fullStr Finite Element Modeling of Composite Materials using Kinematic Constraints
title_full_unstemmed Finite Element Modeling of Composite Materials using Kinematic Constraints
title_sort Finite Element Modeling of Composite Materials using Kinematic Constraints
dc.creator.fl_str_mv E. Ruiz, Oscar
Barschke, Merlin
Uribe, David
Jensen, Jens
López, Carlos
dc.contributor.author.spa.fl_str_mv E. Ruiz, Oscar
Barschke, Merlin
Uribe, David
Jensen, Jens
López, Carlos
dc.contributor.affiliation.spa.fl_str_mv Universidad EAFIT
dc.subject.keyword.eng.fl_str_mv Composite Materials
Geometric Restrictions
Restrictions
Kinematics
topic Composite Materials
Geometric Restrictions
Restrictions
Kinematics
Materiales Compuestos
Restricciones Geométricas
Restricciones
Cinemáticas
dc.subject.keyword.spa.fl_str_mv Materiales Compuestos
Restricciones Geométricas
Restricciones
Cinemáticas
description The purpose of this article is to present simulations of the behavior of composite materials based on kinematic restrictions between the same fibers and between the fibers and the surrounding resin. In the literature review, the authors have found that kinematic restrictions have not been fully exploited to model composite materials, probably due to their high computational cost. The purpose of this article is to expose the implementation and results of such a model, using Finite Element Analysis of prescribed geometric constraints to the resin and fiber nodes. Analytical descriptions of the behavior of composite materials rarely appear. Many approaches to describe composite materials in layers are based on the theory of functions C1Z and C0 Z, such as the Classical Layer Theory (CLT). These theories of functions contain significant simplifications of the material, especially for woven compounds. A hybrid approach to modeling composite materials with Finite Elements (FEA) was developed by Sidhu and Averill and adapted by Li and Sherwood for composite materials woven with glass polypropylene.
publishDate 2009
dc.date.issued.none.fl_str_mv 2009-12-01
dc.date.available.none.fl_str_mv 2019-11-22T19:06:21Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T19:06:21Z
dc.date.none.fl_str_mv 2009-12-01
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14505
identifier_str_mv 2256-4314
1794-9165
url http://hdl.handle.net/10784/14505
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/62
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/62
dc.rights.eng.fl_str_mv Copyright (c) 2009 Oscar E. Ruiz, Merlin Barschke, David Uribe, Jens Jensen, Carlos López
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2009 Oscar E. Ruiz, Merlin Barschke, David Uribe, Jens Jensen, Carlos López
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 5, No 10 (2009)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/e7cc4e8f-6bcd-4d86-8975-9345f00bb66b/download
https://repository.eafit.edu.co/bitstreams/26067ca2-c194-4b6e-8edb-9d89cff88958/download
https://repository.eafit.edu.co/bitstreams/39337fd3-68c6-4c2b-b350-6295110c26c3/download
bitstream.checksum.fl_str_mv da9b21a5c7e00c7f1127cef8e97035e0
516d81ff13a37b1e3b333836a1d29c58
d05bf5aaa7757ebf732a53a9686a8d4c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110217526312960
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2009-12-012019-11-22T19:06:21Z2009-12-012019-11-22T19:06:21Z2256-43141794-9165http://hdl.handle.net/10784/14505The purpose of this article is to present simulations of the behavior of composite materials based on kinematic restrictions between the same fibers and between the fibers and the surrounding resin. In the literature review, the authors have found that kinematic restrictions have not been fully exploited to model composite materials, probably due to their high computational cost. The purpose of this article is to expose the implementation and results of such a model, using Finite Element Analysis of prescribed geometric constraints to the resin and fiber nodes. Analytical descriptions of the behavior of composite materials rarely appear. Many approaches to describe composite materials in layers are based on the theory of functions C1Z and C0 Z, such as the Classical Layer Theory (CLT). These theories of functions contain significant simplifications of the material, especially for woven compounds. A hybrid approach to modeling composite materials with Finite Elements (FEA) was developed by Sidhu and Averill and adapted by Li and Sherwood for composite materials woven with glass polypropylene.El propósito de este artículo es presentar simulaciones del comportamiento de materiales compuestos basado en restricciones cinemáticas entre las mismas fibras y entre las fibras y la resina circundante. En la revisión de literatura, los autores han encontrado que las restricciones cinemáticas no han sido plenamente explotadas para modelar materiales compuestos, probablemente debido a su alto costo computacional. El propósito de este articulo es exponer la implementación y resultados de tal modelo, usando Análisis por Elementos Finitos de restricciones geométricas prescritas a los nodos de la resina y las fibras. Las descripciones analíticas del comportamiento de materiales compuestos raramente aparecen. Muchas aproximaciones para describir materiales compuestos en capas son basadas en la teoría de funciones C1Z y C0 Z, tal como la Teoría Clásica de Capas (CLT). Estas teorías de funciones contienen significativas simplificaciones del material, especialmente para compuestos tejidos. Una aproximación hibrida para modelar materiales compuestos con Elementos Finitos (FEA) fue desarrollada por Sidhu y Averill y adaptada por Li y Sherwood para materiales compuestos tejidos con polipropileno de vidrio.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/62http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/62Copyright (c) 2009 Oscar E. Ruiz, Merlin Barschke, David Uribe, Jens Jensen, Carlos LópezAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 5, No 10 (2009)Finite Element Modeling of Composite Materials using Kinematic ConstraintsModelado de Materiales Compuestos por Elementos Finitos usando Restricciones Cinemáticasarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Composite MaterialsGeometric RestrictionsRestrictionsKinematicsMateriales CompuestosRestricciones GeométricasRestriccionesCinemáticasE. Ruiz, OscarBarschke, MerlinUribe, DavidJensen, JensLópez, CarlosUniversidad EAFITIngeniería y Ciencia510133154ing.cienc.THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/e7cc4e8f-6bcd-4d86-8975-9345f00bb66b/downloadda9b21a5c7e00c7f1127cef8e97035e0MD51ORIGINAL7.pdf7.pdfTexto completo PDFapplication/pdf306209https://repository.eafit.edu.co/bitstreams/26067ca2-c194-4b6e-8edb-9d89cff88958/download516d81ff13a37b1e3b333836a1d29c58MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html372https://repository.eafit.edu.co/bitstreams/39337fd3-68c6-4c2b-b350-6295110c26c3/downloadd05bf5aaa7757ebf732a53a9686a8d4cMD5310784/14505oai:repository.eafit.edu.co:10784/145052020-03-02 22:36:44.511open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co