Inference in Multiple Linear Regression Model with Generalized Secant Hyperbolic Distribution Errors
We study multiple linear regression model under non-normally distributed random error by considering the family of generalized secant hyperbolic distributions. We derive the estimators of model parameters by using modified maximum likelihood methodology and explore the properties of the modified max...
- Autores:
-
Burbano Moreno, Álvaro Alexander
Melo-Martinez, Oscar Orlando
Qamarul Islam, M
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/30404
- Acceso en línea:
- http://hdl.handle.net/10784/30404
- Palabra clave:
- Maximum likelihood
Modified maximum likelihood
Least square
Generalized Secant Hyperbolic distribution
Robustness
Hypothesis testing
- Rights
- License
- Copyright © 2021 Álvaro Alexander Burbano Moreno, Oscar Orlando Melo-Martinez, M Qamarul Islam
id |
REPOEAFIT2_0e7bcae534fd9e9bfee95823ad815644 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/30404 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2021-05-122021-10-05T16:59:46Z2021-05-122021-10-05T16:59:46Z1794-91652256-4314http://hdl.handle.net/10784/30404We study multiple linear regression model under non-normally distributed random error by considering the family of generalized secant hyperbolic distributions. We derive the estimators of model parameters by using modified maximum likelihood methodology and explore the properties of the modified maximum likelihood estimators so obtained. We show that the proposed estimators are more efficient and robust than the commonly used least square estimators. We also develop the relevant test of hypothesis procedures and compared the performance of such tests vis-a-vis the classical tests that are based upon the least square approach.application/pdfengUniversidad EAFIThttps://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6516/5159https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6516/5159Copyright © 2021 Álvaro Alexander Burbano Moreno, Oscar Orlando Melo-Martinez, M Qamarul IslamAcceso abiertohttp://purl.org/coar/access_right/c_abf2Ingeniería y Ciencia, Vol 17, No. 33 (2021)Inference in Multiple Linear Regression Model with Generalized Secant Hyperbolic Distribution Errorsinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Maximum likelihoodModified maximum likelihoodLeast squareGeneralized Secant Hyperbolic distributionRobustnessHypothesis testingBurbano Moreno, Álvaro AlexanderMelo-Martinez, Oscar OrlandoQamarul Islam, MUniversidade Federal Minas GeraisUniversidad Nacional de ColombiaMiddle East Technical UniversityIngeniería y Ciencia17334570ORIGINALInference in Multiple Linear.pdfInference in Multiple Linear.pdfTexto completo PDFapplication/pdf594956https://repository.eafit.edu.co/bitstreams/4e433a90-cfae-4cf7-9b09-dca96cba4de2/download9a0b3f9597427c5032401ab639b47925MD51articulo.htmlarticulo.htmlTexto completo HTMLtext/html361https://repository.eafit.edu.co/bitstreams/90b8c56a-10a1-4918-954b-588784ae2dc8/download394174087fb5c7dfe805d5fad47316b6MD52THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/fc2b278c-6cd0-466e-a19e-3f19606dec5b/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5310784/30404oai:repository.eafit.edu.co:10784/304042022-05-02 14:55:51.471open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Inference in Multiple Linear Regression Model with Generalized Secant Hyperbolic Distribution Errors |
title |
Inference in Multiple Linear Regression Model with Generalized Secant Hyperbolic Distribution Errors |
spellingShingle |
Inference in Multiple Linear Regression Model with Generalized Secant Hyperbolic Distribution Errors Maximum likelihood Modified maximum likelihood Least square Generalized Secant Hyperbolic distribution Robustness Hypothesis testing |
title_short |
Inference in Multiple Linear Regression Model with Generalized Secant Hyperbolic Distribution Errors |
title_full |
Inference in Multiple Linear Regression Model with Generalized Secant Hyperbolic Distribution Errors |
title_fullStr |
Inference in Multiple Linear Regression Model with Generalized Secant Hyperbolic Distribution Errors |
title_full_unstemmed |
Inference in Multiple Linear Regression Model with Generalized Secant Hyperbolic Distribution Errors |
title_sort |
Inference in Multiple Linear Regression Model with Generalized Secant Hyperbolic Distribution Errors |
dc.creator.fl_str_mv |
Burbano Moreno, Álvaro Alexander Melo-Martinez, Oscar Orlando Qamarul Islam, M |
dc.contributor.author.none.fl_str_mv |
Burbano Moreno, Álvaro Alexander Melo-Martinez, Oscar Orlando Qamarul Islam, M |
dc.contributor.affiliation.none.fl_str_mv |
Universidade Federal Minas Gerais Universidad Nacional de Colombia Middle East Technical University |
dc.subject.keyword.eng.fl_str_mv |
Maximum likelihood Modified maximum likelihood Least square Generalized Secant Hyperbolic distribution Robustness Hypothesis testing |
topic |
Maximum likelihood Modified maximum likelihood Least square Generalized Secant Hyperbolic distribution Robustness Hypothesis testing |
description |
We study multiple linear regression model under non-normally distributed random error by considering the family of generalized secant hyperbolic distributions. We derive the estimators of model parameters by using modified maximum likelihood methodology and explore the properties of the modified maximum likelihood estimators so obtained. We show that the proposed estimators are more efficient and robust than the commonly used least square estimators. We also develop the relevant test of hypothesis procedures and compared the performance of such tests vis-a-vis the classical tests that are based upon the least square approach. |
publishDate |
2021 |
dc.date.available.none.fl_str_mv |
2021-10-05T16:59:46Z |
dc.date.issued.none.fl_str_mv |
2021-05-12 |
dc.date.accessioned.none.fl_str_mv |
2021-10-05T16:59:46Z |
dc.date.none.fl_str_mv |
2021-05-12 |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/article article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-9165 2256-4314 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/30404 |
identifier_str_mv |
1794-9165 2256-4314 |
url |
http://hdl.handle.net/10784/30404 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6516/5159 |
dc.relation.uri.none.fl_str_mv |
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/6516/5159 |
dc.rights.eng.fl_str_mv |
Copyright © 2021 Álvaro Alexander Burbano Moreno, Oscar Orlando Melo-Martinez, M Qamarul Islam |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright © 2021 Álvaro Alexander Burbano Moreno, Oscar Orlando Melo-Martinez, M Qamarul Islam Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia, Vol 17, No. 33 (2021) |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/4e433a90-cfae-4cf7-9b09-dca96cba4de2/download https://repository.eafit.edu.co/bitstreams/90b8c56a-10a1-4918-954b-588784ae2dc8/download https://repository.eafit.edu.co/bitstreams/fc2b278c-6cd0-466e-a19e-3f19606dec5b/download |
bitstream.checksum.fl_str_mv |
9a0b3f9597427c5032401ab639b47925 394174087fb5c7dfe805d5fad47316b6 da9b21a5c7e00c7f1127cef8e97035e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110659323887616 |