A fully-discrete finite element approximation for the eddy currents problem
The eddy current model is obtained from Maxwell’s equations by neglecting the displacement currents in the Amp`ere-Maxwell’s law and it is commonly used in many problems in sciences, engineering and industry (e.g, in induction heating, electromagnetic braking, and power transformers). The so-called...
- Autores:
-
Acevedo, Ramiro
Loaiza, Gerardo
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/14413
- Acceso en línea:
- http://hdl.handle.net/10784/14413
- Palabra clave:
- Transient Eddy Current Model
Potential Formulation
Fully-Discrete Approximation
finite Elements
Error Estimates
Modelo De Corriente Parásita Transitoria
Formulación Potencial
Aproximación Totalmente Discreta
Elementos Finitos
Estimaciones De Error
- Rights
- License
- Copyright (c) 2013 Ramiro Acevedo, Gerardo Loaiza
id |
REPOEAFIT2_0b073a0a81c70c9fe3253f927c58b129 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/14413 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A fully-discrete finite element approximation for the eddy currents problem |
dc.title.spa.fl_str_mv |
Un esquema completamente discreto basado en elementos finitos para el problema de corrientes inducidas |
title |
A fully-discrete finite element approximation for the eddy currents problem |
spellingShingle |
A fully-discrete finite element approximation for the eddy currents problem Transient Eddy Current Model Potential Formulation Fully-Discrete Approximation finite Elements Error Estimates Modelo De Corriente Parásita Transitoria Formulación Potencial Aproximación Totalmente Discreta Elementos Finitos Estimaciones De Error |
title_short |
A fully-discrete finite element approximation for the eddy currents problem |
title_full |
A fully-discrete finite element approximation for the eddy currents problem |
title_fullStr |
A fully-discrete finite element approximation for the eddy currents problem |
title_full_unstemmed |
A fully-discrete finite element approximation for the eddy currents problem |
title_sort |
A fully-discrete finite element approximation for the eddy currents problem |
dc.creator.fl_str_mv |
Acevedo, Ramiro Loaiza, Gerardo |
dc.contributor.author.spa.fl_str_mv |
Acevedo, Ramiro Loaiza, Gerardo |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad del Cauca |
dc.subject.keyword.eng.fl_str_mv |
Transient Eddy Current Model Potential Formulation Fully-Discrete Approximation finite Elements Error Estimates |
topic |
Transient Eddy Current Model Potential Formulation Fully-Discrete Approximation finite Elements Error Estimates Modelo De Corriente Parásita Transitoria Formulación Potencial Aproximación Totalmente Discreta Elementos Finitos Estimaciones De Error |
dc.subject.keyword.spa.fl_str_mv |
Modelo De Corriente Parásita Transitoria Formulación Potencial Aproximación Totalmente Discreta Elementos Finitos Estimaciones De Error |
description |
The eddy current model is obtained from Maxwell’s equations by neglecting the displacement currents in the Amp`ere-Maxwell’s law and it is commonly used in many problems in sciences, engineering and industry (e.g, in induction heating, electromagnetic braking, and power transformers). The so-called “A, V −A potential formulation” (B´ır´o & Preis [1]) is nowadays one of the most accepted formulations to solve the eddy current equations numerically, and B´ır´o & Valli [2] have recently provided its well-posedness and convergence analysis for the time-harmonic eddy current problem. The aim of this paper is to extend the analysis performed by B´ır´o & Valli to the general transient eddy current model. We provide a backward-Euler fully-discrete approximation based on nodal finite elements and we show that the resulting discrete variational problem is well posed. Furthermore, error estimates that prove optimal convergence are settled. |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013-03-22 |
dc.date.available.none.fl_str_mv |
2019-11-22T17:02:39Z |
dc.date.accessioned.none.fl_str_mv |
2019-11-22T17:02:39Z |
dc.date.none.fl_str_mv |
2013-03-22 |
dc.type.eng.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794-9165 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/14413 |
dc.identifier.doi.none.fl_str_mv |
10.17230/ingciecia.9.17.6 |
identifier_str_mv |
2256-4314 1794-9165 10.17230/ingciecia.9.17.6 |
url |
http://hdl.handle.net/10784/14413 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1822 |
dc.relation.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1822 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2013 Ramiro Acevedo, Gerardo Loaiza |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright (c) 2013 Ramiro Acevedo, Gerardo Loaiza Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia; Vol 9, No 17 (2013) |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/9725c75c-e0a1-413b-9262-b777b3bd5dc0/download https://repository.eafit.edu.co/bitstreams/dce5b480-60d3-42fb-830c-d14e6c4f59d2/download https://repository.eafit.edu.co/bitstreams/a564d105-7728-40dc-82b6-6e57f7c5b59f/download |
bitstream.checksum.fl_str_mv |
9e6c214b6f2e933750b5265b766c2b6c 8ffc4c581a837292546463a38a0f04e2 da9b21a5c7e00c7f1127cef8e97035e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110457179406336 |
spelling |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2013-03-222019-11-22T17:02:39Z2013-03-222019-11-22T17:02:39Z2256-43141794-9165http://hdl.handle.net/10784/1441310.17230/ingciecia.9.17.6The eddy current model is obtained from Maxwell’s equations by neglecting the displacement currents in the Amp`ere-Maxwell’s law and it is commonly used in many problems in sciences, engineering and industry (e.g, in induction heating, electromagnetic braking, and power transformers). The so-called “A, V −A potential formulation” (B´ır´o & Preis [1]) is nowadays one of the most accepted formulations to solve the eddy current equations numerically, and B´ır´o & Valli [2] have recently provided its well-posedness and convergence analysis for the time-harmonic eddy current problem. The aim of this paper is to extend the analysis performed by B´ır´o & Valli to the general transient eddy current model. We provide a backward-Euler fully-discrete approximation based on nodal finite elements and we show that the resulting discrete variational problem is well posed. Furthermore, error estimates that prove optimal convergence are settled.El modelo de corriente parásita se obtiene de las ecuaciones de Maxwell al descuidar las corrientes de desplazamiento en la ley de Amp`ere-Maxwell y se usa comúnmente en muchos problemas en ciencias, ingeniería e industria (por ejemplo, en calentamiento por inducción, frenado electromagnético y transformadores de potencia) . La llamada "formulación potencial A, V −A" (B´ır´o & Preis [1]) es hoy en día una de las formulaciones más aceptadas para resolver numéricamente las ecuaciones de corrientes parásitas, y B´ır´o & Valli [ 2] han proporcionado recientemente su análisis de buena posición y convergencia para el problema de la corriente de Foucault armónico en el tiempo. El objetivo de este trabajo es extender el análisis realizado por B´ır´o & Valli al modelo general de corrientes de Foucault transitorias. Proporcionamos una aproximación totalmente discreta hacia atrás de Euler basada en elementos nodales finitos y mostramos que el problema de variación discreta resultante está bien planteado. Además, se calculan las estimaciones de error que demuestran una convergencia óptima.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1822http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1822Copyright (c) 2013 Ramiro Acevedo, Gerardo LoaizaAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 9, No 17 (2013)A fully-discrete finite element approximation for the eddy currents problemUn esquema completamente discreto basado en elementos finitos para el problema de corrientes inducidasarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Transient Eddy Current ModelPotential FormulationFully-Discrete Approximationfinite ElementsError EstimatesModelo De Corriente Parásita TransitoriaFormulación PotencialAproximación Totalmente DiscretaElementos FinitosEstimaciones De ErrorAcevedo, RamiroLoaiza, GerardoUniversidad del CaucaIngeniería y Ciencia917111145ing.cienc.ORIGINALdocument (8).pdfdocument (8).pdfTexto completo PDFapplication/pdf225687https://repository.eafit.edu.co/bitstreams/9725c75c-e0a1-413b-9262-b777b3bd5dc0/download9e6c214b6f2e933750b5265b766c2b6cMD51articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/dce5b480-60d3-42fb-830c-d14e6c4f59d2/download8ffc4c581a837292546463a38a0f04e2MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/a564d105-7728-40dc-82b6-6e57f7c5b59f/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5210784/14413oai:repository.eafit.edu.co:10784/144132020-03-02 21:09:24.802open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |