A fully-discrete finite element approximation for the eddy currents problem

The eddy current model is obtained from Maxwell’s equations by neglecting the displacement currents in the Amp`ere-Maxwell’s law and it is commonly used in many problems in sciences, engineering and industry (e.g, in induction heating, electromagnetic braking, and power transformers). The so-called...

Full description

Autores:
Acevedo, Ramiro
Loaiza, Gerardo
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/14413
Acceso en línea:
http://hdl.handle.net/10784/14413
Palabra clave:
Transient Eddy Current Model
Potential Formulation
Fully-Discrete Approximation
finite Elements
Error Estimates
Modelo De Corriente Parásita Transitoria
Formulación Potencial
Aproximación Totalmente Discreta
Elementos Finitos
Estimaciones De Error
Rights
License
Copyright (c) 2013 Ramiro Acevedo, Gerardo Loaiza
id REPOEAFIT2_0b073a0a81c70c9fe3253f927c58b129
oai_identifier_str oai:repository.eafit.edu.co:10784/14413
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv A fully-discrete finite element approximation for the eddy currents problem
dc.title.spa.fl_str_mv Un esquema completamente discreto basado en elementos finitos para el problema de corrientes inducidas
title A fully-discrete finite element approximation for the eddy currents problem
spellingShingle A fully-discrete finite element approximation for the eddy currents problem
Transient Eddy Current Model
Potential Formulation
Fully-Discrete Approximation
finite Elements
Error Estimates
Modelo De Corriente Parásita Transitoria
Formulación Potencial
Aproximación Totalmente Discreta
Elementos Finitos
Estimaciones De Error
title_short A fully-discrete finite element approximation for the eddy currents problem
title_full A fully-discrete finite element approximation for the eddy currents problem
title_fullStr A fully-discrete finite element approximation for the eddy currents problem
title_full_unstemmed A fully-discrete finite element approximation for the eddy currents problem
title_sort A fully-discrete finite element approximation for the eddy currents problem
dc.creator.fl_str_mv Acevedo, Ramiro
Loaiza, Gerardo
dc.contributor.author.spa.fl_str_mv Acevedo, Ramiro
Loaiza, Gerardo
dc.contributor.affiliation.spa.fl_str_mv Universidad del Cauca
dc.subject.keyword.eng.fl_str_mv Transient Eddy Current Model
Potential Formulation
Fully-Discrete Approximation
finite Elements
Error Estimates
topic Transient Eddy Current Model
Potential Formulation
Fully-Discrete Approximation
finite Elements
Error Estimates
Modelo De Corriente Parásita Transitoria
Formulación Potencial
Aproximación Totalmente Discreta
Elementos Finitos
Estimaciones De Error
dc.subject.keyword.spa.fl_str_mv Modelo De Corriente Parásita Transitoria
Formulación Potencial
Aproximación Totalmente Discreta
Elementos Finitos
Estimaciones De Error
description The eddy current model is obtained from Maxwell’s equations by neglecting the displacement currents in the Amp`ere-Maxwell’s law and it is commonly used in many problems in sciences, engineering and industry (e.g, in induction heating, electromagnetic braking, and power transformers). The so-called “A, V −A potential formulation” (B´ır´o & Preis [1]) is nowadays one of the most accepted formulations to solve the eddy current equations numerically, and B´ır´o & Valli [2] have recently provided its well-posedness and convergence analysis for the time-harmonic eddy current problem. The aim of this paper is to extend the analysis performed by B´ır´o & Valli to the general transient eddy current model. We provide a backward-Euler fully-discrete approximation based on nodal finite elements and we show that the resulting discrete variational problem is well posed. Furthermore, error estimates that prove optimal convergence are settled.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-03-22
dc.date.available.none.fl_str_mv 2019-11-22T17:02:39Z
dc.date.accessioned.none.fl_str_mv 2019-11-22T17:02:39Z
dc.date.none.fl_str_mv 2013-03-22
dc.type.eng.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-4314
1794-9165
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/14413
dc.identifier.doi.none.fl_str_mv 10.17230/ingciecia.9.17.6
identifier_str_mv 2256-4314
1794-9165
10.17230/ingciecia.9.17.6
url http://hdl.handle.net/10784/14413
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1822
dc.relation.uri.none.fl_str_mv http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1822
dc.rights.eng.fl_str_mv Copyright (c) 2013 Ramiro Acevedo, Gerardo Loaiza
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Copyright (c) 2013 Ramiro Acevedo, Gerardo Loaiza
Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.source.none.fl_str_mv instname:Universidad EAFIT
reponame:Repositorio Institucional Universidad EAFIT
dc.source.spa.fl_str_mv Ingeniería y Ciencia; Vol 9, No 17 (2013)
instname_str Universidad EAFIT
institution Universidad EAFIT
reponame_str Repositorio Institucional Universidad EAFIT
collection Repositorio Institucional Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/9725c75c-e0a1-413b-9262-b777b3bd5dc0/download
https://repository.eafit.edu.co/bitstreams/dce5b480-60d3-42fb-830c-d14e6c4f59d2/download
https://repository.eafit.edu.co/bitstreams/a564d105-7728-40dc-82b6-6e57f7c5b59f/download
bitstream.checksum.fl_str_mv 9e6c214b6f2e933750b5265b766c2b6c
8ffc4c581a837292546463a38a0f04e2
da9b21a5c7e00c7f1127cef8e97035e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110457179406336
spelling Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2013-03-222019-11-22T17:02:39Z2013-03-222019-11-22T17:02:39Z2256-43141794-9165http://hdl.handle.net/10784/1441310.17230/ingciecia.9.17.6The eddy current model is obtained from Maxwell’s equations by neglecting the displacement currents in the Amp`ere-Maxwell’s law and it is commonly used in many problems in sciences, engineering and industry (e.g, in induction heating, electromagnetic braking, and power transformers). The so-called “A, V −A potential formulation” (B´ır´o & Preis [1]) is nowadays one of the most accepted formulations to solve the eddy current equations numerically, and B´ır´o & Valli [2] have recently provided its well-posedness and convergence analysis for the time-harmonic eddy current problem. The aim of this paper is to extend the analysis performed by B´ır´o & Valli to the general transient eddy current model. We provide a backward-Euler fully-discrete approximation based on nodal finite elements and we show that the resulting discrete variational problem is well posed. Furthermore, error estimates that prove optimal convergence are settled.El modelo de corriente parásita se obtiene de las ecuaciones de Maxwell al descuidar las corrientes de desplazamiento en la ley de Amp`ere-Maxwell y se usa comúnmente en muchos problemas en ciencias, ingeniería e industria (por ejemplo, en calentamiento por inducción, frenado electromagnético y transformadores de potencia) . La llamada "formulación potencial A, V −A" (B´ır´o & Preis [1]) es hoy en día una de las formulaciones más aceptadas para resolver numéricamente las ecuaciones de corrientes parásitas, y B´ır´o & Valli [ 2] han proporcionado recientemente su análisis de buena posición y convergencia para el problema de la corriente de Foucault armónico en el tiempo. El objetivo de este trabajo es extender el análisis realizado por B´ır´o & Valli al modelo general de corrientes de Foucault transitorias. Proporcionamos una aproximación totalmente discreta hacia atrás de Euler basada en elementos nodales finitos y mostramos que el problema de variación discreta resultante está bien planteado. Además, se calculan las estimaciones de error que demuestran una convergencia óptima.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1822http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1822Copyright (c) 2013 Ramiro Acevedo, Gerardo LoaizaAcceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia; Vol 9, No 17 (2013)A fully-discrete finite element approximation for the eddy currents problemUn esquema completamente discreto basado en elementos finitos para el problema de corrientes inducidasarticleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Transient Eddy Current ModelPotential FormulationFully-Discrete Approximationfinite ElementsError EstimatesModelo De Corriente Parásita TransitoriaFormulación PotencialAproximación Totalmente DiscretaElementos FinitosEstimaciones De ErrorAcevedo, RamiroLoaiza, GerardoUniversidad del CaucaIngeniería y Ciencia917111145ing.cienc.ORIGINALdocument (8).pdfdocument (8).pdfTexto completo PDFapplication/pdf225687https://repository.eafit.edu.co/bitstreams/9725c75c-e0a1-413b-9262-b777b3bd5dc0/download9e6c214b6f2e933750b5265b766c2b6cMD51articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/dce5b480-60d3-42fb-830c-d14e6c4f59d2/download8ffc4c581a837292546463a38a0f04e2MD53THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/a564d105-7728-40dc-82b6-6e57f7c5b59f/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5210784/14413oai:repository.eafit.edu.co:10784/144132020-03-02 21:09:24.802open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co