Neuronal Synchronization of Electrical Activity, Using the Hodgkin-Huxley Model and RCLSJ Circuit
We simulated the neuronal electrical activity using the Hodgkin-Huxley model (HH) and a superconductor circuit, containing Josephson junctions. These HH model make possible simulate the main neuronal dynamics characteristics such as action potentials, firing threshold and refractory period. The purp...
- Autores:
-
Diaz M, Jose A
Téquita, Oscar
Naranjo, Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/11285
- Acceso en línea:
- http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3035
http://hdl.handle.net/10784/11285
- Palabra clave:
- Hodgkin-Huxley model
Josephson Junction
Lyapunov Method
método modelo de Hodgkin-Huxley
uniones Josephson
funciones de Lyapunov
- Rights
- License
- Copyright (c) 2016 Ingeniería y Ciencia | ing.cienc.
id |
REPOEAFIT2_0af6a08005d0bc3ed8d8d1ed5e77ef63 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/11285 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
2016-02-222017-04-03T16:10:26Z2016-02-222017-04-03T16:10:26Z2256-43141794–9165http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3035http://hdl.handle.net/10784/1128510.17230/ingciencia.12.23.5We simulated the neuronal electrical activity using the Hodgkin-Huxley model (HH) and a superconductor circuit, containing Josephson junctions. These HH model make possible simulate the main neuronal dynamics characteristics such as action potentials, firing threshold and refractory period. The purpose of the manuscript is show a method to syncronize a RCLshunted Josephson junction to a neuronal dynamics represented by the HH model. Thus the RCLSJ circuit is able to mimics the behavior of the HH neuron. We controlated the RCLSJ circuit, using and improved adaptative track scheme, that with the improved Lyapunov functions and the two controllable gain coefficients allowing synchronization of two neuronal models. Results will provide the path to follow forward the understanding neuronal networks synchronization about, generating the intrinsic brain behavior.Simulamos la actividad eléctrica neuronal mediante el modelo de Hodgkin-Huxley (HH) y un circuito superconductor, que contiene uniones Josephson. El modelo HH simulan las características principales de la dinámica neuronal tales como potenciales de acción, umbrales de disparo y el períodos refractarios. El propósito del manuscrito es mostrar un método para sincronizar un circuito con union Josephson RCLSJ a una dinámica neuronal representado por el modelo HH. Así, el circuito RCLSJ es capaz de imitar el comportamiento de la neurona HH. Controlamos el circuito RCLSJ, utilizando un esquema de control adaptativo, que con funciones de Lyapunov y dos coeficientes de ganancia controlables nos permiten la sincronización de los dos modelos neuronales. Los resultados proporcionan una ruta a seguir adelante en el entendimiento de la sincronización de redes neuronales, generadas por el comportamiento intrinseco del cerebro.application/pdfengUniversidad EAFIThttp://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3035Copyright (c) 2016 Ingeniería y Ciencia | ing.cienc.http://creativecommons.org/licenses/by/4.0Acceso abiertohttp://purl.org/coar/access_right/c_abf2instname:Universidad EAFITreponame:Repositorio Institucional Universidad EAFITIngeniería y Ciencia | ing.cienc.; Vol 12, No 23 (2016); 93-106Ingeniería y Ciencia | ing.cienc.; Vol 12, No 23 (2016); 93-106Neuronal Synchronization of Electrical Activity, Using the Hodgkin-Huxley Model and RCLSJ CircuitSincronización de la actividad eléctrica neuronal, utilizando el modelo de Hodgkin-Huxley y el circuito RCLSJinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionarticlepublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hodgkin-Huxley modelJosephson JunctionLyapunov Methodmétodo modelo de Hodgkin-Huxleyuniones Josephsonfunciones de LyapunovDiaz M, Jose A47699ce0-c331-40d9-ac1a-22606c48bf3e-1Téquita, Oscarc7867a00-e510-4125-9cc5-60fd2c7e5cd7-1Naranjo, Fernandod568c275-d620-40a6-a3da-9dba482539d5-1Ingeniería y Ciencia122393106ing.ciencORIGINALdocument (33).pdfdocument (33).pdfTexto completo PDFapplication/pdf720017https://repository.eafit.edu.co/bitstreams/1d7325f7-2266-41d4-94bc-ea7442806965/downloadcd015eb738392127ef356a467c9f44a4MD52articulo.htmlarticulo.htmlTexto completo HTMLtext/html374https://repository.eafit.edu.co/bitstreams/71e0c8a6-721e-4d68-b82c-8b72202115a1/downloadcd9587fb20a77730354bdb81e62d38afMD54THUMBNAILminaitura-ig_Mesa de trabajo 1.jpgminaitura-ig_Mesa de trabajo 1.jpgimage/jpeg265796https://repository.eafit.edu.co/bitstreams/b6e6844f-5134-4f99-9c27-76caa64c3099/downloadda9b21a5c7e00c7f1127cef8e97035e0MD5310784/11285oai:repository.eafit.edu.co:10784/112852024-12-04 11:48:27.367open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.eng.fl_str_mv |
Neuronal Synchronization of Electrical Activity, Using the Hodgkin-Huxley Model and RCLSJ Circuit |
dc.title.spa.fl_str_mv |
Sincronización de la actividad eléctrica neuronal, utilizando el modelo de Hodgkin-Huxley y el circuito RCLSJ |
title |
Neuronal Synchronization of Electrical Activity, Using the Hodgkin-Huxley Model and RCLSJ Circuit |
spellingShingle |
Neuronal Synchronization of Electrical Activity, Using the Hodgkin-Huxley Model and RCLSJ Circuit Hodgkin-Huxley model Josephson Junction Lyapunov Method método modelo de Hodgkin-Huxley uniones Josephson funciones de Lyapunov |
title_short |
Neuronal Synchronization of Electrical Activity, Using the Hodgkin-Huxley Model and RCLSJ Circuit |
title_full |
Neuronal Synchronization of Electrical Activity, Using the Hodgkin-Huxley Model and RCLSJ Circuit |
title_fullStr |
Neuronal Synchronization of Electrical Activity, Using the Hodgkin-Huxley Model and RCLSJ Circuit |
title_full_unstemmed |
Neuronal Synchronization of Electrical Activity, Using the Hodgkin-Huxley Model and RCLSJ Circuit |
title_sort |
Neuronal Synchronization of Electrical Activity, Using the Hodgkin-Huxley Model and RCLSJ Circuit |
dc.creator.fl_str_mv |
Diaz M, Jose A Téquita, Oscar Naranjo, Fernando |
dc.contributor.author.none.fl_str_mv |
Diaz M, Jose A Téquita, Oscar Naranjo, Fernando |
dc.subject.keyword.eng.fl_str_mv |
Hodgkin-Huxley model Josephson Junction Lyapunov Method |
topic |
Hodgkin-Huxley model Josephson Junction Lyapunov Method método modelo de Hodgkin-Huxley uniones Josephson funciones de Lyapunov |
dc.subject.keyword.spa.fl_str_mv |
método modelo de Hodgkin-Huxley uniones Josephson funciones de Lyapunov |
description |
We simulated the neuronal electrical activity using the Hodgkin-Huxley model (HH) and a superconductor circuit, containing Josephson junctions. These HH model make possible simulate the main neuronal dynamics characteristics such as action potentials, firing threshold and refractory period. The purpose of the manuscript is show a method to syncronize a RCLshunted Josephson junction to a neuronal dynamics represented by the HH model. Thus the RCLSJ circuit is able to mimics the behavior of the HH neuron. We controlated the RCLSJ circuit, using and improved adaptative track scheme, that with the improved Lyapunov functions and the two controllable gain coefficients allowing synchronization of two neuronal models. Results will provide the path to follow forward the understanding neuronal networks synchronization about, generating the intrinsic brain behavior. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016-02-22 |
dc.date.available.none.fl_str_mv |
2017-04-03T16:10:26Z |
dc.date.accessioned.none.fl_str_mv |
2017-04-03T16:10:26Z |
dc.date.none.fl_str_mv |
2016-02-22 |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion article publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-4314 1794–9165 |
dc.identifier.uri.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3035 http://hdl.handle.net/10784/11285 |
dc.identifier.doi.none.fl_str_mv |
10.17230/ingciencia.12.23.5 |
identifier_str_mv |
2256-4314 1794–9165 10.17230/ingciencia.12.23.5 |
url |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3035 http://hdl.handle.net/10784/11285 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3035 |
dc.rights.spa.fl_str_mv |
Copyright (c) 2016 Ingeniería y Ciencia | ing.cienc. http://creativecommons.org/licenses/by/4.0 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Copyright (c) 2016 Ingeniería y Ciencia | ing.cienc. http://creativecommons.org/licenses/by/4.0 Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.source.none.fl_str_mv |
instname:Universidad EAFIT reponame:Repositorio Institucional Universidad EAFIT |
dc.source.eng.fl_str_mv |
Ingeniería y Ciencia | ing.cienc.; Vol 12, No 23 (2016); 93-106 |
dc.source.spa.fl_str_mv |
Ingeniería y Ciencia | ing.cienc.; Vol 12, No 23 (2016); 93-106 |
instname_str |
Universidad EAFIT |
institution |
Universidad EAFIT |
reponame_str |
Repositorio Institucional Universidad EAFIT |
collection |
Repositorio Institucional Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/1d7325f7-2266-41d4-94bc-ea7442806965/download https://repository.eafit.edu.co/bitstreams/71e0c8a6-721e-4d68-b82c-8b72202115a1/download https://repository.eafit.edu.co/bitstreams/b6e6844f-5134-4f99-9c27-76caa64c3099/download |
bitstream.checksum.fl_str_mv |
cd015eb738392127ef356a467c9f44a4 cd9587fb20a77730354bdb81e62d38af da9b21a5c7e00c7f1127cef8e97035e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1818102402721513472 |