Three-dimensional surface contouring of macroscopic objects by means of phase-difference images

We report a technique to determine the 3D contour of objects with dimensions of at least 4 orders of magnitude larger than the illumination optical wavelength. Our proposal is based on the numerical reconstruction of the optical wave field of digitally recorded holograms. The required modulo 2 phase...

Full description

Autores:
García Sucerquia, Jorge Iván
Velásquez Prieto, Daniel Ignacio
García Sucerquia, Jorge Iván
Velásquez Prieto, Daniel Ignacio
Tipo de recurso:
Fecha de publicación:
2006
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/2798
Acceso en línea:
http://hdl.handle.net/10784/2798
Palabra clave:
Reconstrucción 3D
HOLOGRAFÍA
SISTEMAS DE REPRESENTACIÓN TRIDIMENSIONAL
DIFRACCIÓN
CONVOLUCIONES (MATEMÁTICAS)
MODELOS MATEMÁTICOS
ÓPTICA
PROCESAMIENTO DIGITAL DE IMÁGENES
Three-dimensional display systems
Holography
Diffraction
Convolutions (Mathematics)
Mathematical models
Optics
Image processing - Digital techniques
Reconstrucción 3D
Rights
License
Acceso restringido
Description
Summary:We report a technique to determine the 3D contour of objects with dimensions of at least 4 orders of magnitude larger than the illumination optical wavelength. Our proposal is based on the numerical reconstruction of the optical wave field of digitally recorded holograms. The required modulo 2 phase map in any contouring process is obtained by means of the direct subtraction of two phase-contrast images under different illumination angles to create a phase-difference image of a still object. Obtaining the phase-difference images is only possible by using the capability of numerical reconstruction of the complex optical field provided by digital holography. This unique characteristic leads us to a robust, reliable, and fast procedure that requires only two images. A theoretical analysis of the contouring system is shown, with verification by means of numerical and experimental results. © 2006 Optical Society of America