Energy management strategy for a solar race car including meteorologic and probabilistic variable
This thesis describes the energy management strategy for racing solar cars, the racing strategy is treated as an optimal control problem with random variables and uncertain predictions. A computational model is developed for estimating the vehicle performance under specific circumstances. Two evoluti...
- Autores:
-
Betancur Valencia, Esteban
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/13660
- Acceso en línea:
- http://repository.eafit.edu.co/handle/10784/13660
- Palabra clave:
- Carro solar
METEOROLOGÍA
ENERGÍA SOLAR
VARIABLES ALEATORIAS
PROGRAMACIÓN HEURÍSTICA
Solar Car
Race strategy
Energy management
Heuristic optimization
Solar resource
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_06efcf566eac7f4ada2e779ff7d460b3 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/13660 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Osorio Gómez, GilbertoBetancur Valencia, EstebanDoctor in Engineeringebetanc2@eafit.edu.coMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2019-07-16T16:05:22Z20182019-07-16T16:05:22Zhttp://repository.eafit.edu.co/handle/10784/13660629.2 B562This thesis describes the energy management strategy for racing solar cars, the racing strategy is treated as an optimal control problem with random variables and uncertain predictions. A computational model is developed for estimating the vehicle performance under specific circumstances. Two evolutionary heuristic optimization methods are implemented and tested for this case, their effectiveness, convergence and efficiency is measured and compared to exhaustive search approaches. The dependency on solar radiation is validated using the computational model with different test cases. In order to reduce the uncertainties on the solar radiation estimation, satellite images are used as inputs to image processing and machine learning techniques, their efficacy is compared. Finally, a validation case is executed and different scenarios are evaluated with the inclusion of the proposed methods, the experimental performance of a vehicle obtained using the strategy in the World Solar Challenge 2015 is exposed and compared to the predicted results from the simulation.application/pdfspaCarro solarMETEOROLOGÍAENERGÍA SOLARVARIABLES ALEATORIASPROGRAMACIÓN HEURÍSTICASolar CarRace strategyEnergy managementHeuristic optimizationSolar resourceEnergy management strategy for a solar race car including meteorologic and probabilistic variabledoctoralThesisinfo:eu-repo/semantics/doctoralThesisTesis DoctoralacceptedVersionhttp://purl.org/coar/resource_type/c_db06Acceso abiertohttp://purl.org/coar/access_right/c_abf2Doctorado en IngenieríaEscuela de IngenieríaMedellínLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/1ef58098-564e-4a17-bfaf-8c8c6059c8f6/download76025f86b095439b7ac65b367055d40cMD51ORIGINALEsteban_BetancurValencia_2018.pdfEsteban_BetancurValencia_2018.pdfTrabajo de gradoapplication/pdf17124645https://repository.eafit.edu.co/bitstreams/06d98b50-cda6-4735-b038-5912fc8c168e/download4b3104d70ee7b79a7e567bd0fe5fd41eMD5210784/13660oai:repository.eafit.edu.co:10784/136602022-09-15 16:02:36.725open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.spa.fl_str_mv |
Energy management strategy for a solar race car including meteorologic and probabilistic variable |
title |
Energy management strategy for a solar race car including meteorologic and probabilistic variable |
spellingShingle |
Energy management strategy for a solar race car including meteorologic and probabilistic variable Carro solar METEOROLOGÍA ENERGÍA SOLAR VARIABLES ALEATORIAS PROGRAMACIÓN HEURÍSTICA Solar Car Race strategy Energy management Heuristic optimization Solar resource |
title_short |
Energy management strategy for a solar race car including meteorologic and probabilistic variable |
title_full |
Energy management strategy for a solar race car including meteorologic and probabilistic variable |
title_fullStr |
Energy management strategy for a solar race car including meteorologic and probabilistic variable |
title_full_unstemmed |
Energy management strategy for a solar race car including meteorologic and probabilistic variable |
title_sort |
Energy management strategy for a solar race car including meteorologic and probabilistic variable |
dc.creator.fl_str_mv |
Betancur Valencia, Esteban |
dc.contributor.advisor.spa.fl_str_mv |
Osorio Gómez, Gilberto |
dc.contributor.author.none.fl_str_mv |
Betancur Valencia, Esteban |
dc.subject.spa.fl_str_mv |
Carro solar |
topic |
Carro solar METEOROLOGÍA ENERGÍA SOLAR VARIABLES ALEATORIAS PROGRAMACIÓN HEURÍSTICA Solar Car Race strategy Energy management Heuristic optimization Solar resource |
dc.subject.lemb.spa.fl_str_mv |
METEOROLOGÍA ENERGÍA SOLAR VARIABLES ALEATORIAS PROGRAMACIÓN HEURÍSTICA |
dc.subject.keyword.spa.fl_str_mv |
Solar Car Race strategy Energy management Heuristic optimization Solar resource |
description |
This thesis describes the energy management strategy for racing solar cars, the racing strategy is treated as an optimal control problem with random variables and uncertain predictions. A computational model is developed for estimating the vehicle performance under specific circumstances. Two evolutionary heuristic optimization methods are implemented and tested for this case, their effectiveness, convergence and efficiency is measured and compared to exhaustive search approaches. The dependency on solar radiation is validated using the computational model with different test cases. In order to reduce the uncertainties on the solar radiation estimation, satellite images are used as inputs to image processing and machine learning techniques, their efficacy is compared. Finally, a validation case is executed and different scenarios are evaluated with the inclusion of the proposed methods, the experimental performance of a vehicle obtained using the strategy in the World Solar Challenge 2015 is exposed and compared to the predicted results from the simulation. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.available.none.fl_str_mv |
2019-07-16T16:05:22Z |
dc.date.accessioned.none.fl_str_mv |
2019-07-16T16:05:22Z |
dc.type.eng.fl_str_mv |
doctoralThesis info:eu-repo/semantics/doctoralThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.local.spa.fl_str_mv |
Tesis Doctoral |
dc.type.hasVersion.eng.fl_str_mv |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://repository.eafit.edu.co/handle/10784/13660 |
dc.identifier.ddc.none.fl_str_mv |
629.2 B562 |
url |
http://repository.eafit.edu.co/handle/10784/13660 |
identifier_str_mv |
629.2 B562 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.eng.fl_str_mv |
application/pdf |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.program.spa.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.department.spa.fl_str_mv |
Escuela de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/1ef58098-564e-4a17-bfaf-8c8c6059c8f6/download https://repository.eafit.edu.co/bitstreams/06d98b50-cda6-4735-b038-5912fc8c168e/download |
bitstream.checksum.fl_str_mv |
76025f86b095439b7ac65b367055d40c 4b3104d70ee7b79a7e567bd0fe5fd41e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110322641862656 |