Energy management strategy for a solar race car including meteorologic and probabilistic variable

This thesis describes the energy management strategy for racing solar cars, the racing strategy is treated as an optimal control problem with random variables and uncertain predictions. A computational model is developed for estimating the vehicle performance under specific circumstances. Two evoluti...

Full description

Autores:
Betancur Valencia, Esteban
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/13660
Acceso en línea:
http://repository.eafit.edu.co/handle/10784/13660
Palabra clave:
Carro solar
METEOROLOGÍA
ENERGÍA SOLAR
VARIABLES ALEATORIAS
PROGRAMACIÓN HEURÍSTICA
Solar Car
Race strategy
Energy management
Heuristic optimization
Solar resource
Rights
License
Acceso abierto
id REPOEAFIT2_06efcf566eac7f4ada2e779ff7d460b3
oai_identifier_str oai:repository.eafit.edu.co:10784/13660
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Osorio Gómez, GilbertoBetancur Valencia, EstebanDoctor in Engineeringebetanc2@eafit.edu.coMedellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2019-07-16T16:05:22Z20182019-07-16T16:05:22Zhttp://repository.eafit.edu.co/handle/10784/13660629.2 B562This thesis describes the energy management strategy for racing solar cars, the racing strategy is treated as an optimal control problem with random variables and uncertain predictions. A computational model is developed for estimating the vehicle performance under specific circumstances. Two evolutionary heuristic optimization methods are implemented and tested for this case, their effectiveness, convergence and efficiency is measured and compared to exhaustive search approaches. The dependency on solar radiation is validated using the computational model with different test cases. In order to reduce the uncertainties on the solar radiation estimation, satellite images are used as inputs to image processing and machine learning techniques, their efficacy is compared. Finally, a validation case is executed and different scenarios are evaluated with the inclusion of the proposed methods, the experimental performance of a vehicle obtained using the strategy in the World Solar Challenge 2015 is exposed and compared to the predicted results from the simulation.application/pdfspaCarro solarMETEOROLOGÍAENERGÍA SOLARVARIABLES ALEATORIASPROGRAMACIÓN HEURÍSTICASolar CarRace strategyEnergy managementHeuristic optimizationSolar resourceEnergy management strategy for a solar race car including meteorologic and probabilistic variabledoctoralThesisinfo:eu-repo/semantics/doctoralThesisTesis DoctoralacceptedVersionhttp://purl.org/coar/resource_type/c_db06Acceso abiertohttp://purl.org/coar/access_right/c_abf2Doctorado en IngenieríaEscuela de IngenieríaMedellínLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/1ef58098-564e-4a17-bfaf-8c8c6059c8f6/download76025f86b095439b7ac65b367055d40cMD51ORIGINALEsteban_BetancurValencia_2018.pdfEsteban_BetancurValencia_2018.pdfTrabajo de gradoapplication/pdf17124645https://repository.eafit.edu.co/bitstreams/06d98b50-cda6-4735-b038-5912fc8c168e/download4b3104d70ee7b79a7e567bd0fe5fd41eMD5210784/13660oai:repository.eafit.edu.co:10784/136602022-09-15 16:02:36.725open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.spa.fl_str_mv Energy management strategy for a solar race car including meteorologic and probabilistic variable
title Energy management strategy for a solar race car including meteorologic and probabilistic variable
spellingShingle Energy management strategy for a solar race car including meteorologic and probabilistic variable
Carro solar
METEOROLOGÍA
ENERGÍA SOLAR
VARIABLES ALEATORIAS
PROGRAMACIÓN HEURÍSTICA
Solar Car
Race strategy
Energy management
Heuristic optimization
Solar resource
title_short Energy management strategy for a solar race car including meteorologic and probabilistic variable
title_full Energy management strategy for a solar race car including meteorologic and probabilistic variable
title_fullStr Energy management strategy for a solar race car including meteorologic and probabilistic variable
title_full_unstemmed Energy management strategy for a solar race car including meteorologic and probabilistic variable
title_sort Energy management strategy for a solar race car including meteorologic and probabilistic variable
dc.creator.fl_str_mv Betancur Valencia, Esteban
dc.contributor.advisor.spa.fl_str_mv Osorio Gómez, Gilberto
dc.contributor.author.none.fl_str_mv Betancur Valencia, Esteban
dc.subject.spa.fl_str_mv Carro solar
topic Carro solar
METEOROLOGÍA
ENERGÍA SOLAR
VARIABLES ALEATORIAS
PROGRAMACIÓN HEURÍSTICA
Solar Car
Race strategy
Energy management
Heuristic optimization
Solar resource
dc.subject.lemb.spa.fl_str_mv METEOROLOGÍA
ENERGÍA SOLAR
VARIABLES ALEATORIAS
PROGRAMACIÓN HEURÍSTICA
dc.subject.keyword.spa.fl_str_mv Solar Car
Race strategy
Energy management
Heuristic optimization
Solar resource
description This thesis describes the energy management strategy for racing solar cars, the racing strategy is treated as an optimal control problem with random variables and uncertain predictions. A computational model is developed for estimating the vehicle performance under specific circumstances. Two evolutionary heuristic optimization methods are implemented and tested for this case, their effectiveness, convergence and efficiency is measured and compared to exhaustive search approaches. The dependency on solar radiation is validated using the computational model with different test cases. In order to reduce the uncertainties on the solar radiation estimation, satellite images are used as inputs to image processing and machine learning techniques, their efficacy is compared. Finally, a validation case is executed and different scenarios are evaluated with the inclusion of the proposed methods, the experimental performance of a vehicle obtained using the strategy in the World Solar Challenge 2015 is exposed and compared to the predicted results from the simulation.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.available.none.fl_str_mv 2019-07-16T16:05:22Z
dc.date.accessioned.none.fl_str_mv 2019-07-16T16:05:22Z
dc.type.eng.fl_str_mv doctoralThesis
info:eu-repo/semantics/doctoralThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.local.spa.fl_str_mv Tesis Doctoral
dc.type.hasVersion.eng.fl_str_mv acceptedVersion
dc.identifier.uri.none.fl_str_mv http://repository.eafit.edu.co/handle/10784/13660
dc.identifier.ddc.none.fl_str_mv 629.2 B562
url http://repository.eafit.edu.co/handle/10784/13660
identifier_str_mv 629.2 B562
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.eng.fl_str_mv application/pdf
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.program.spa.fl_str_mv Doctorado en Ingeniería
dc.publisher.department.spa.fl_str_mv Escuela de Ingeniería
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/1ef58098-564e-4a17-bfaf-8c8c6059c8f6/download
https://repository.eafit.edu.co/bitstreams/06d98b50-cda6-4735-b038-5912fc8c168e/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
4b3104d70ee7b79a7e567bd0fe5fd41e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110322641862656