Recommender systems based on linked data

Backgrounds: The increase in the amount of structured data published using the principles of Linked Data, means that now it is more likely to find resources in the Web of Data that describe real life concepts. However, discovering resources related to any given resource is still an open research are...

Full description

Autores:
Figueroa Martínez, Cristhian Nicolás
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2016
Institución:
Universidad del Cauca
Repositorio:
Repositorio Unicauca
Idioma:
eng
OAI Identifier:
oai:repositorio.unicauca.edu.co:123456789/1264
Acceso en línea:
http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1264
Palabra clave:
Linked Data
RS
Semantic similarity measures
Semantic relationships
Recommender Systems
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOCAUCA2_f8b46334bc0863bfbf06929007fd8a87
oai_identifier_str oai:repositorio.unicauca.edu.co:123456789/1264
network_acronym_str REPOCAUCA2
network_name_str Repositorio Unicauca
repository_id_str
dc.title.eng.fl_str_mv Recommender systems based on linked data
title Recommender systems based on linked data
spellingShingle Recommender systems based on linked data
Linked Data
RS
Semantic similarity measures
Semantic relationships
Recommender Systems
title_short Recommender systems based on linked data
title_full Recommender systems based on linked data
title_fullStr Recommender systems based on linked data
title_full_unstemmed Recommender systems based on linked data
title_sort Recommender systems based on linked data
dc.creator.fl_str_mv Figueroa Martínez, Cristhian Nicolás
dc.contributor.author.none.fl_str_mv Figueroa Martínez, Cristhian Nicolás
dc.subject.eng.fl_str_mv Linked Data
RS
Semantic similarity measures
Semantic relationships
Recommender Systems
topic Linked Data
RS
Semantic similarity measures
Semantic relationships
Recommender Systems
description Backgrounds: The increase in the amount of structured data published using the principles of Linked Data, means that now it is more likely to find resources in the Web of Data that describe real life concepts. However, discovering resources related to any given resource is still an open research area. This thesis studies Recommender Systems (RS) that use Linked Data as a source for generating recommendations exploiting the large amount of available resources and the relationships among them. Aims: The main objective of this study was to propose a recommendation technique for resources considering semantic relationships between concepts from Linked Data. The specific objectives were: (i) Define semantic relationships derived from resources taking into account the knowledge found in Linked Data datasets. (ii) Determine semantic similarity measures based on the semantic relationships derived from resources. (iii) Propose an algorithm to dynamically generate automatic rankings of resources according to defined similarity measures. Methodology: It was based on the recommendations of the Project management Institute and the Integral Model for Engineering Professionals (Universidad del Cauca). The first one for managing the project, and the second one for developing the experimental prototype. Accordingly, the main phases were: (i) Conceptual base generation for identifying the main problems, objectives and the project scope. A Systematic Literature Review was conducted for this phase, which highlighted the relationships and similarity measures among resources in Linked Data, and the main issues, features, and types of RS based on Linked Data. (ii) Solution development is about designing and developing the experimental prototype for testing the algorithms studied in this thesis. Results: The main results obtained were: (i) The first Systematic Literature Review on RS based on Linked Data. (ii) A framework to execute and analyze recommendation algorithms based on Linked Data. (iii) A dynamic algorithm for resource recommendation based on on the knowledge of Linked Data relationships. (iv) A comparative study of algorithms for RS based on Linked Data. (v) Two implementations of the proposed framework. One with graph-based algorithms and other with machine learning algorithms. (vi) The application of the framework to various scenarios to demonstrate its feasibility within the context of real applications. Conclusions: (i) The proposed framework demonstrated to be useful for developing and evaluating different configurations of algorithms to create novel RS based on Linked Data suitable to users’ requirements, applications, domains and contexts. (ii) The layered architecture of the proposed framework is also useful towards the reproducibility of the results for the research community. (iii) Linked data based RS are useful to present explanations of the recommendations, because of the graph structure of the datasets. (iv) Graph-based algorithms take advantage of intrinsic relationships among resources from Linked Data. Nevertheless, their execution time is still an open issue. Machine Learning algorithms are also suitable, they provide functions useful to deal with large amounts of data, so they can help to improve the performance (execution time) of the RS. However most of them need a training phase that require to know a priory the application domain in order to obtain reliable results. (v) A logical evolution of RS based on Linked Data is the combination of graph-based with machine learning algorithms to obtain accurate results while keeping low execution times. However, research and experimentation is still needed to explore more techniques from the vast amount of machine learning algorithms to determine the most suitable ones to deal with Linked Data.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016-12
dc.date.accessioned.none.fl_str_mv 2019-10-30T20:34:52Z
dc.date.available.none.fl_str_mv 2019-10-30T20:34:52Z
dc.type.spa.fl_str_mv Tesis doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1264
dc.identifier.instname.none.fl_str_mv
dc.identifier.reponame.none.fl_str_mv
dc.identifier.repourl.none.fl_str_mv
url http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1264
identifier_str_mv
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Universidad del Cauca
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica y Telecomunicaciones
dc.publisher.program.spa.fl_str_mv Doctorado en Ingeniería Telemática
institution Universidad del Cauca
bitstream.url.fl_str_mv http://repositorio.unicauca.edu.co/bitstream/123456789/1264/1/Recommender%20Systems%20based%20on%20Linked%20Data.pdf
http://repositorio.unicauca.edu.co/bitstream/123456789/1264/2/license.txt
bitstream.checksum.fl_str_mv 8c5e7dcd3a472bd8027fd5269bc51f85
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Dspace - Universidad del Cauca
repository.mail.fl_str_mv biblios@unicauca.edu.co
_version_ 1808396268495437824
spelling Figueroa Martínez, Cristhian Nicolás2019-10-30T20:34:52Z2019-10-30T20:34:52Z2016-12http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1264Backgrounds: The increase in the amount of structured data published using the principles of Linked Data, means that now it is more likely to find resources in the Web of Data that describe real life concepts. However, discovering resources related to any given resource is still an open research area. This thesis studies Recommender Systems (RS) that use Linked Data as a source for generating recommendations exploiting the large amount of available resources and the relationships among them. Aims: The main objective of this study was to propose a recommendation technique for resources considering semantic relationships between concepts from Linked Data. The specific objectives were: (i) Define semantic relationships derived from resources taking into account the knowledge found in Linked Data datasets. (ii) Determine semantic similarity measures based on the semantic relationships derived from resources. (iii) Propose an algorithm to dynamically generate automatic rankings of resources according to defined similarity measures. Methodology: It was based on the recommendations of the Project management Institute and the Integral Model for Engineering Professionals (Universidad del Cauca). The first one for managing the project, and the second one for developing the experimental prototype. Accordingly, the main phases were: (i) Conceptual base generation for identifying the main problems, objectives and the project scope. A Systematic Literature Review was conducted for this phase, which highlighted the relationships and similarity measures among resources in Linked Data, and the main issues, features, and types of RS based on Linked Data. (ii) Solution development is about designing and developing the experimental prototype for testing the algorithms studied in this thesis. Results: The main results obtained were: (i) The first Systematic Literature Review on RS based on Linked Data. (ii) A framework to execute and analyze recommendation algorithms based on Linked Data. (iii) A dynamic algorithm for resource recommendation based on on the knowledge of Linked Data relationships. (iv) A comparative study of algorithms for RS based on Linked Data. (v) Two implementations of the proposed framework. One with graph-based algorithms and other with machine learning algorithms. (vi) The application of the framework to various scenarios to demonstrate its feasibility within the context of real applications. Conclusions: (i) The proposed framework demonstrated to be useful for developing and evaluating different configurations of algorithms to create novel RS based on Linked Data suitable to users’ requirements, applications, domains and contexts. (ii) The layered architecture of the proposed framework is also useful towards the reproducibility of the results for the research community. (iii) Linked data based RS are useful to present explanations of the recommendations, because of the graph structure of the datasets. (iv) Graph-based algorithms take advantage of intrinsic relationships among resources from Linked Data. Nevertheless, their execution time is still an open issue. Machine Learning algorithms are also suitable, they provide functions useful to deal with large amounts of data, so they can help to improve the performance (execution time) of the RS. However most of them need a training phase that require to know a priory the application domain in order to obtain reliable results. (v) A logical evolution of RS based on Linked Data is the combination of graph-based with machine learning algorithms to obtain accurate results while keeping low execution times. However, research and experimentation is still needed to explore more techniques from the vast amount of machine learning algorithms to determine the most suitable ones to deal with Linked Data.Antecedentes: El incremento en la cantidad de datos estructurados, que se encuentran publicados bajo los principios de los datos enlazados (Linked Data), demuestra que ahora es más fácil encontrar recursos que describan conceptos de la vida real en la Web de los datos. Sin embargo, descubrir recursos relacionados con un recurso determinado es aún un área abierta de investigación. Esta tesis, estudia los sistemas de recomendación (RS) que utilizan los datos enlazados como fuente para generar recomendaciones explotando la gran cantidad de recursos disponibles y las relaciones entre ellos. Objetivos: El objetivo principal de este estudio fue proponer una técnica de recomendación que tenga en cuenta las relaciones semánticas entre conceptos de los datos enlazados (Linked Data). Los objetivos específicos fueron: (i) Definir relaciones semánticas derivadas de los recursos teniendo en cuenta el conocimiento encontrado en los conjuntos de datos de Linked Data. (ii) Determinar las medidas de similitud semánticas derivadas de esos recursos. (iii) Proponer un algoritmo para generar dinamicamente y automaticamente rankings de recursos de acuerdo con las relaciones de similitud definidas. Metodología: la metodología estuvo orientada por las recomendaciones del PMI (Project Management Institute) y el Modelo Integral para un Profesional en Ingeniería de la Universidad del Cauca. El primero para gestionar el proyecto, y el segundo para desarrollar el prototipo experimental. De esta manera las principales fases fueron: (i) Generación de la base conceptual para identificar los problemas principales, objetivos, y los alcances del proyectos. Con este fin, una revisión sistemática de la literatura fue realizada, la cual permitió determinar as relaciones y medidas de similitud entre recursos de Linked Data, así como los principales problemas, características y tipos de RS basados en los datos enlazados. (ii) Desarrollo de la solución en la cual fue diseñado y desarrollado el prototipo experimental para probar los algoritmos estudiados en esta tesis. Resultados: Los principales resultados fueron: (i) La primera revisión sistemática acerca de RS basados en los datos enlazados. (ii) Un entorno para ejecutar y analizar algoritmos de recomendación basados en los datos enlazados. (iii) Un algoritmo dinámico para la recomendación de recursos basada en el conocimiento de las relaciones entre datos enlazados. (iv) Un estudio comparativo de los algoritmos para RS basados en los datos enlazados. (v) Dos implementaciones del entorno propuesto. Una con algoritmos basados en grafos y la otra con algoritmos de aprendizaje supervisado. (vi) La aplicación del entorno a varios escenarios para demostrar su factibilidad dentro del contexto de aplicaciones reales. Conclusiones: (i) El entorno propuesto demostró su utilidad para desarrollar y evaluar diferentes configuraciones de algoritmos para crear RS novedosos basados en los datos enlazados adaptados a los requerimientos de los usuarios, aplicaciones, dominios y contextos. (ii) La arquitectura en capas del entorno propuesto es también útil para permitir que los resultados puedan ser reproducibles para la comunidad científica. (iii) Los RS basados en los datos enlazados son útiles para presentar explicaciones de las recomendaciones debido a la estructura de grafo que tienen los conjuntos de datos. (iv) Los algoritmos basados en grafos toman ventaja de las relaciones intrínsecas entre recursos de los datos enlazados. No obstante sus tiempos de ejecución son aún tema de investigación. Los algoritmos de aprendizaje supervisado también son adecuados, ellos proveen funciones útiles para tratar con grandes cantidades de datos, por lo tanto pueden ayudar a mejorar el rendimiento (tiempo de ejecución) de los RS. Sin embargo, ellos necesitan una fase de entrenamiento que requiere conocer a priori el dominio de aplicación para obtener resultados confiables. (v) Una evolución lógica de los RS basados en LD es la combinación de algoritmos basados en grafos y los de aprendizaje supervisado para obtener resultados confiables mientras mantienen bajos tiempos de ejecución. Sin embargo, aún es necesario llevar a cabo experimentación e investigación para explorar más técnicas de la gran cantidad de algoritmos de aprendizaje supervisado y determinar los más aptos para tratar con los datos enlazados aplicados a la recomendación de recursos.engUniversidad del CaucaFacultad de Ingeniería Electrónica y TelecomunicacionesDoctorado en Ingeniería Telemáticahttps://creativecommons.org/licenses/by-nc-nd/4.0/https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Linked DataRSSemantic similarity measuresSemantic relationshipsRecommender SystemsRecommender systems based on linked dataTesis doctoradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINALRecommender Systems based on Linked Data.pdfRecommender Systems based on Linked Data.pdfapplication/pdf11367959http://repositorio.unicauca.edu.co/bitstream/123456789/1264/1/Recommender%20Systems%20based%20on%20Linked%20Data.pdf8c5e7dcd3a472bd8027fd5269bc51f85MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.unicauca.edu.co/bitstream/123456789/1264/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/1264oai:repositorio.unicauca.edu.co:123456789/12642021-05-28 12:09:59.17Dspace - Universidad del Caucabiblios@unicauca.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=