Localization in urban spaces using a collaborative WIFI+GSM- ingerprint-based approach

State-of-the-art fingerprinting-based localization methods relying on WiFi/GSM information provide sufficient localization accuracy for many mobile applications and work reliably in urban areas and indoors. These methods assume that each location contains a unique combination of signal strength read...

Full description

Autores:
Cugia Peña, Kristian Samuel
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2012
Institución:
Universidad del Cauca
Repositorio:
Repositorio Unicauca
Idioma:
eng
OAI Identifier:
oai:repositorio.unicauca.edu.co:123456789/1839
Acceso en línea:
http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1839
Palabra clave:
Localization
Mobile Phone
WiFi
GSM
Fingerprints
MDS
GPS Anchor Points
Rights
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id REPOCAUCA2_dab505c8385c52755a7829652ec7fb9e
oai_identifier_str oai:repositorio.unicauca.edu.co:123456789/1839
network_acronym_str REPOCAUCA2
network_name_str Repositorio Unicauca
repository_id_str
dc.title.eng.fl_str_mv Localization in urban spaces using a collaborative WIFI+GSM- ingerprint-based approach
title Localization in urban spaces using a collaborative WIFI+GSM- ingerprint-based approach
spellingShingle Localization in urban spaces using a collaborative WIFI+GSM- ingerprint-based approach
Localization
Mobile Phone
WiFi
GSM
Fingerprints
MDS
GPS Anchor Points
title_short Localization in urban spaces using a collaborative WIFI+GSM- ingerprint-based approach
title_full Localization in urban spaces using a collaborative WIFI+GSM- ingerprint-based approach
title_fullStr Localization in urban spaces using a collaborative WIFI+GSM- ingerprint-based approach
title_full_unstemmed Localization in urban spaces using a collaborative WIFI+GSM- ingerprint-based approach
title_sort Localization in urban spaces using a collaborative WIFI+GSM- ingerprint-based approach
dc.creator.fl_str_mv Cugia Peña, Kristian Samuel
dc.contributor.author.none.fl_str_mv Cugia Peña, Kristian Samuel
dc.subject.eng.fl_str_mv Localization
Mobile Phone
WiFi
GSM
Fingerprints
MDS
GPS Anchor Points
topic Localization
Mobile Phone
WiFi
GSM
Fingerprints
MDS
GPS Anchor Points
description State-of-the-art fingerprinting-based localization methods relying on WiFi/GSM information provide sufficient localization accuracy for many mobile applications and work reliably in urban areas and indoors. These methods assume that each location contains a unique combination of signal strength readings. To obtain a location estimation, a mobile devices gathers signal strength readings and with the help of a fingerprinting algorithm, the closest match in a reference database is found. Building this reference database requires a training set consisting of geo-referenced fingerprints. Traditional approaches require manual labelling of the reference locations or GPS information. This work proposes a collaborative, semi-supervised WiFi/GSMbased fingerprinting method where only a small fraction of all fingerprints needs to be georeferenced. This allows for automatic indexing of areas in the absence of GPS reception as found in urban spaces and indoors without requiring manual labelling of fingerprints. Taking advantage of the characteristic that the similarity between two fingerprints correlates to the distance between their corresponding locations, this method applies multidimensional scaling to generate a topology estimation of the training set. With the help of a subset of geo-referenced fingerprints, the topology estimation is anchored to physical locations now serving as a reference database. Further fingerprints can be used to refine and extend the topology estimation. Hence, the covered space grows gradually. An evaluation of the approach is performed using an urban-scale dataset showing that the method can locate a mobile device with a median accuracy of 30 m. Hereby, only 7% of the fingerprints are geo-referenced. Further, the localization error decreases and converges to a value comparable to related work as new fingerprints are added to the reference database. A promising application of the method is seen by combining it with existing fingerprinting systems to extend their functionality into areas where a GPS-based indexing is not possible.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012-07
dc.date.accessioned.none.fl_str_mv 2019-12-12T14:00:34Z
dc.date.available.none.fl_str_mv 2019-12-12T14:00:34Z
dc.type.spa.fl_str_mv Trabajos de grado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1839
dc.identifier.instname.none.fl_str_mv
dc.identifier.reponame.none.fl_str_mv
dc.identifier.repourl.none.fl_str_mv
url http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1839
identifier_str_mv
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Universidad del Cauca
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica y Telecomunicaciones 
dc.publisher.program.spa.fl_str_mv Ingeniería Electrónica y Telecomunicaciones
institution Universidad del Cauca
bitstream.url.fl_str_mv http://repositorio.unicauca.edu.co/bitstream/123456789/1839/1/LOCALIZATION%20IN%20URBAN%20SPACES%20USING%20A%20COLLABORATIVE%20WIFI%2bGSM-FINGERPRINT-BASED%20APPROACH.pdf
http://repositorio.unicauca.edu.co/bitstream/123456789/1839/2/license.txt
bitstream.checksum.fl_str_mv cc884752f829742721213d72103ef524
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Dspace - Universidad del Cauca
repository.mail.fl_str_mv biblios@unicauca.edu.co
_version_ 1808396262568886272
spelling Cugia Peña, Kristian Samuel2019-12-12T14:00:34Z2019-12-12T14:00:34Z2012-07http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1839State-of-the-art fingerprinting-based localization methods relying on WiFi/GSM information provide sufficient localization accuracy for many mobile applications and work reliably in urban areas and indoors. These methods assume that each location contains a unique combination of signal strength readings. To obtain a location estimation, a mobile devices gathers signal strength readings and with the help of a fingerprinting algorithm, the closest match in a reference database is found. Building this reference database requires a training set consisting of geo-referenced fingerprints. Traditional approaches require manual labelling of the reference locations or GPS information. This work proposes a collaborative, semi-supervised WiFi/GSMbased fingerprinting method where only a small fraction of all fingerprints needs to be georeferenced. This allows for automatic indexing of areas in the absence of GPS reception as found in urban spaces and indoors without requiring manual labelling of fingerprints. Taking advantage of the characteristic that the similarity between two fingerprints correlates to the distance between their corresponding locations, this method applies multidimensional scaling to generate a topology estimation of the training set. With the help of a subset of geo-referenced fingerprints, the topology estimation is anchored to physical locations now serving as a reference database. Further fingerprints can be used to refine and extend the topology estimation. Hence, the covered space grows gradually. An evaluation of the approach is performed using an urban-scale dataset showing that the method can locate a mobile device with a median accuracy of 30 m. Hereby, only 7% of the fingerprints are geo-referenced. Further, the localization error decreases and converges to a value comparable to related work as new fingerprints are added to the reference database. A promising application of the method is seen by combining it with existing fingerprinting systems to extend their functionality into areas where a GPS-based indexing is not possible.engUniversidad del CaucaFacultad de Ingeniería Electrónica y Telecomunicaciones Ingeniería Electrónica y Telecomunicacioneshttps://creativecommons.org/licenses/by-nc-nd/4.0/https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2LocalizationMobile PhoneWiFiGSMFingerprintsMDSGPS Anchor PointsLocalization in urban spaces using a collaborative WIFI+GSM- ingerprint-based approachTrabajos de gradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINALLOCALIZATION IN URBAN SPACES USING A COLLABORATIVE WIFI+GSM-FINGERPRINT-BASED APPROACH.pdfLOCALIZATION IN URBAN SPACES USING A COLLABORATIVE WIFI+GSM-FINGERPRINT-BASED APPROACH.pdfapplication/pdf13945518http://repositorio.unicauca.edu.co/bitstream/123456789/1839/1/LOCALIZATION%20IN%20URBAN%20SPACES%20USING%20A%20COLLABORATIVE%20WIFI%2bGSM-FINGERPRINT-BASED%20APPROACH.pdfcc884752f829742721213d72103ef524MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.unicauca.edu.co/bitstream/123456789/1839/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/1839oai:repositorio.unicauca.edu.co:123456789/18392021-05-27 17:15:23.277Dspace - Universidad del Caucabiblios@unicauca.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=