Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio
En este trabajo se presentan resultados de un estudio experimental sobre la resistencia al ataque externo de sulfato de sodio (Na2SO4) en concretos autocompactantes (CACs) con residuo de mampostería (RM). Los CACs presentaban un contenido de agua constante de 202,5 kg/m3 y diferentes volúmenes de R...
- Autores:
-
Silva Urrego, Yimmy Fernando
Delvasto, Silvio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5103
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5103
https://doi.org/10.24050/reia.v17i33.1361
- Palabra clave:
- Residuo de mampostería
Concreto autocompactante
Sulfatos
Expansión
Etringita.
ceramico / materiales compuestos
Residue of masonry
Self-compacting concrete
Sulfates
Expansion
Ettringite
- Rights
- openAccess
- License
- Revista EIA - 2020
id |
REIA2_f3fffcd854030b5efc0d2f4b40da31b1 |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/5103 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio |
dc.title.translated.eng.fl_str_mv |
Influence of masonry residue on the resistance of self-compacting concrete to the sodium sulfate attack |
title |
Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio |
spellingShingle |
Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio Residuo de mampostería Concreto autocompactante Sulfatos Expansión Etringita. ceramico / materiales compuestos Residue of masonry Self-compacting concrete Sulfates Expansion Ettringite |
title_short |
Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio |
title_full |
Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio |
title_fullStr |
Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio |
title_full_unstemmed |
Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio |
title_sort |
Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio |
dc.creator.fl_str_mv |
Silva Urrego, Yimmy Fernando Delvasto, Silvio |
dc.contributor.author.spa.fl_str_mv |
Silva Urrego, Yimmy Fernando Delvasto, Silvio |
dc.subject.spa.fl_str_mv |
Residuo de mampostería Concreto autocompactante Sulfatos Expansión Etringita. ceramico / materiales compuestos |
topic |
Residuo de mampostería Concreto autocompactante Sulfatos Expansión Etringita. ceramico / materiales compuestos Residue of masonry Self-compacting concrete Sulfates Expansion Ettringite |
dc.subject.eng.fl_str_mv |
Residue of masonry Self-compacting concrete Sulfates Expansion Ettringite |
description |
En este trabajo se presentan resultados de un estudio experimental sobre la resistencia al ataque externo de sulfato de sodio (Na2SO4) en concretos autocompactantes (CACs) con residuo de mampostería (RM). Los CACs presentaban un contenido de agua constante de 202,5 kg/m3 y diferentes volúmenes de RM (0%, 25% Y 50%) como reemplazo parcial de cemento Portland (OPC) expuesto a una solución de sulfato de sodio al 5%. Las propiedades en estado fresco como fluidez, capacidad de paso y resistencia a la segregación se evaluaron mediante el flujo de asentamiento, embudo en V y caja en L. En estado endurecido, la resistencia a la compresión y expansión fueron determinadas. Por otra parte, técnicas de difracción de rayos X (DRX), microscopia electrónica de barrido (MEB) y espectroscopia de Infrarrojo con transformada de Fourier (FTIR) fueron aplicadas en pastas para investigar los efectos de los sulfatos sobre la microestructura. Los resultados mostraron que todas las mezclas cumplen las propiedades en estado fresco, además se encontró que cuando los CACs son inmersos en la solución de sulfato de sodio, el RM puede mejorar la resistencia de los CACs al ataque por sulfatos en comparación con el CAC solo de OPC. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-02-03 00:00:00 2022-06-17T20:20:38Z |
dc.date.available.none.fl_str_mv |
2020-02-03 00:00:00 2022-06-17T20:20:38Z |
dc.date.issued.none.fl_str_mv |
2020-02-03 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/5103 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v17i33.1361 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v17i33.1361 |
identifier_str_mv |
1794-1237 10.24050/reia.v17i33.1361 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/5103 https://doi.org/10.24050/reia.v17i33.1361 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abd Elaty, M.A.A.; Ghazy M.F. (2018). Fluidity evaluation of fiber reinforced-self compacting concrete based on buoyancy law. HBRC Journal, 14, pp. 368-378. https://doi.org/10.1016/j.hbrcj.2017.04.003. Asensio de Lucas, E.; Medina, C.; Frías, M.; Sánchez de Rojas, M.I. (2016). Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance. Construction and Building Materials, 127, pp. 950-058. https://doi.org/10.1016/j.conbuildmat.2016.10.047. Bonavetti, V.L.; Rahhal, V.F. (2006). Interacción de adiciones minerales en pastas de cemento. Revista de la Construccion, 52 (268), pp. 57-64. https://repositorio.uc.cl/handle/11534/11378 Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. (2015). Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 99, pp. 59-74. https://doi.org/10.1016/j.jclepro.2015.03.012. Bulatović, V.; Melešev, M.; Radeka, M.; Radonjanin, V.; Lukić, I. (2019). Evaluation of sulfate resistance of concrete with recycled and natural aggregates, Construction and Building Materials. 152, pp. 614-631. http://dx.doi.org/10.1016/j.conbuildmat.2017.06.161. Cai, R.; He, Z.; Tang, S.; Wu, T.; Chen, E. (2018). The early hydration of metakaolin blended cements by non-contact impedance measurement. Cement and Concrete Composites, 92, pp. 70-81. https://doi.org/10.1016/j.cemconcomp.2018.06.001. Chen, F.; Gao, J.; Qi, B.; Shen, D. (2019). Deterioration mechanism of plain and blended cement mortars partially exposed to sulfate attack. Construction and Building Materials, 154, pp. 849-856. https://doi.org/10.1016/j.conbuildmat.2017.08.017. Choudhary, H.K.; A.V. A.; Kumar, R.; Panzi, M.E.; Matteppanavar, S.; Sherikar, B.N.; Sahoo, B. (2015). Observation of phase transformations in cement during hydratation. Construction and Building Materials, 101, pp. 122-129. https://doi.org/10.1016/j.conbuildmat.2015.10.027. EFNARC (2002). Specification and guidelines for self-compacting concrete. European association for producers and applicators of specialist building products. http://www.efnarc.org/pdf/SandGforSCC.PDF EPG (2005). BIBM, CEMBUREAU, ERMCO, EFCA, EFNARC. The European guidelines for self compacting concrete: specification, production and use. The Self-Compacting Concrete European Project Group. http://www.efca.info/download/european-guidelines-for-self-compacting-concrete-scc Ercikdi, B.; Külekci, G.; Yılmaz, T. (2015). Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings. Construction and Building Materials, 93, pp. 573–583. http://dx.doi.org/10.1016/j.conbuildmat.2015.06.042 Gálvez-Martos, J.L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. (2018). Construction and demolition waste best management practice in Europe. Resources, Conservation & Recycling, 136, pp. 166–178. https://doi.org/10.1016/j.resconrec.2018.04.016. Gill, A.S.; Siddique, R. (2018). Durability properties of self compacting concrete incorporating metakaolin and rice husk ash. Construction and Building Materials, 176, pp. 323-332. https://doi.org/10.1016/j.conbuildmat.2018.05.054. Gülsan, M.E.; Alzeebaree, R.; Rasheed, A. A.; Nis, A.; Kurtoğlu, A.E. (2019). Development of fly ash/slag based self compacting geopolymer concrete using nano-silica and steel fiber. Construction and Building Materials, 211, pp. 271-283. https://doi.org/10.1016/j.conbuildmat.2019.03.228 Irbe, L.; Beddoe, R.E.; Heinz, D. (2019). The role of aluminium in C-A-S-H during sulfate attack on concrete. Cement and Concrete Research, 116, pp. 71-80. https://doi.org/10.1016/j.cemconres.2018.11.012 Islam, R.; Nazifa, T.H.; Yuniarto, A.; Uddin, A.S.M.S.; Salmiati, S.; Shahid, S. (2019). An empirical study of construction and demolition waste generation and implication of recycling. Waste Management, 95, pp. 10–21. https://doi.org/10.1016/j.wasman.2019.05.049 Kulkarni, N.G.; Rao, A.B. (2016). Carbon footprint of solid clay bricks fired in clamps of India. Journal of Cleaner Production, 135, pp. 1396-1406. https://doi.org/10.1016/j.jclepro.2016.06.152 Li, B.; Cao, R.; You, N.; Chen, C.; Zhang, Y. (2019). Products and properties of steam cured cement mortar containing lithium slag under partial immersion in sulfate solution. Construction and Building Materials, 220, pp. 596-606. https://doi.org/10.1016/j.conbuildmat.2019.06.062 Li, H.; Dong, L.; Jiang, Z., Yang, X.; Yang, Z. (2016). Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls. Journal of Cleaner Production, 133, pp. 1017- 1026. [Online] Disponible en: https://doi.org/10.1016/j.jclepro.2016.05.149. [Consultado 1 de octubre 2019]. Lin, K.L.; Chen, B.Y.; Chiou, C.S.; Cheng, A. (2010). Waste brick’s potential for use as a pozzolan in blended Portland cement. Waste Management & Research, 28, pp. 647-652. https://doi.org/10.1177/0734242X09355853 Liu, C.; Gao, J.; Chen, F.; Zhao, Y.; Chen, X.; He, Z. (2019). Coupled effect of relative humidity and temperature on the degradation of cement mortars partially exposed to sulfate attack. Construction and Building Materials, 216, pp. 93-100. https://doi.org/10.1016/j.conbuildmat.2019.05.001 Liu, T.; Teng, J.; Yan, G. (2012). The influence of sulfate attack on the dynamic properties of concrete column. Construction and Building Materials, 28, pp. 201-207. https://doi.org/10.1016/j.conbuildmat.2011.08.036 Majhi, R.K.; Nayak, A.N. (2019). Bond, durability and microstructural characteristics of ground granulated blast furnace slag baased recycled aggregate concrete. Construction and Building Materials, 212, pp. 578-595. https://doi.org/10.1016/j.conbuildmat.2019.04.017 Mohammed S. (2017). Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review, Construction and Building Materials, 140, pp. 10–19. https://doi.org/10.1016/j.conbuildmat.2017.02.078 Muduli, R.; Mukharjee, B.B. (2019). Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete, Journal of Cleaner Production. 209, pp. 398-414. https://doi.org/10.1016/j.jclepro.2018.10.221 NRMCA (2004). CIP 37 – Self Consolidating Concrete (SCC). https://www.nrmca.org/aboutconcrete/cips/37p.pdf Santhanam, M.; Cohen, M.D.; Olek, J. (2002). Mechanism of sulfate attack: A fresh look Part 1: Summary of experimental results. Cement and Concrete Research, 32, pp. 915 – 921. https://doi.org/10.1016/S0008-8846(02)00724-X Santhanam, M.; Cohen, M.D.; Olek, J. (2003). Mechanism of sulfate attack: a fresh look Part 2. Proposed mechanisms. Cement and Concrete Research, 33, pp. 341 – 346. https://doi.org/10.1016/S0008-8846(02)00958-4 Schackow, A.; Stringari, D.; Senff, L.; Correia, S.L.; Segadães, A.M. (2015). Influence of fired clay brick waste additions on the durability of mortars. Cement & Concrete Composites, 62, pp. 82–89. http://dx.doi.org/10.1016/j.cemconcomp.2015.04.019 Shaheen, F.; Pradhan, B. (2017). Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cement and Concrete Research, 91, pp. 73-86. https://doi.org/10.1016/j.cemconres.2016.10.008 Sikandar, M.A.; Ahmad, W.; Khan, M.H.; Ali, F.; Waseem, M. Effect of water resistant SiO2 coated SrAl2O4: Eu2+ Dy3+ persistent luminescence phosphor on the properties of Portland cement pastes. Construction and Building Materials, 228, 116823. https://doi.org/10.1016/j.conbuildmat.2019.116823. Silva, G.; Castañeda, D.; Kim, S.; Castañeda, A.; Bertolotti, B.; Ortega-San-Martin, L.; Nakamatsu, J.; Aguilar, R. (2019). Analysis of the production conditions of geopolymer matrices from natural pozzolana and fired clay brick wastes. Construction and Building Materials, 215, pp. 633-643. https://doi.org/10.1016/j.conbuildmat.2019.04.247 Silva, Y.F.; Izquierdo, S.R.; Delvasto, S. (2019). Effect of masonry residue on the hydration of Portland cement paste. Revista DYNA, 86(209), pp. 367-377. http://doi.org/10.15446/dyna.v86n209.77286 Skaropoulou, A.; Sotiriadis, K.; Kakali, G.; Tsivilis, S. (2013). Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack. Cement & Concrete Composites, 36, pp. 267-275. https://doi.org/10.1016/j.cemconcomp.2013.01.007 Tang, Z.; Li, W.; Ke, G.; Zhou, J.L.; Tam, V.W.Y. (2019). Sulfate attack resistance of sustainable concrete incorporating various industrial solid waste. Journal of Cleaner Production, 218, pp. 810-822. https://doi.org/10.1016/j.jclepro.2019.01.337 Wong, C.L.; Mo, K.H.; Yap, S.P.; Alengaram, U.J. (2018). Potential use of brick waste as alternate concrete-making materials: A review. Journal of Cleaner Production, 195, pp. 226-239. https://doi.org/10.1016/j.jclepro.2018.05.193 Zhang Y.; Luo W.; Wang J.; Wang Y.; Xu Y.; Xiao J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, pp. 115-125. https://doi.org/10.1016/j.conbuildmat.2019.03.078 |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1361/1282 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 33 , Año 2020 |
dc.relation.citationendpage.none.fl_str_mv |
14 |
dc.relation.citationissue.spa.fl_str_mv |
33 |
dc.relation.citationstartpage.none.fl_str_mv |
33014 pp. 1 |
dc.relation.citationvolume.spa.fl_str_mv |
17 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2020 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2020 https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1361 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/f2d3591b-dfed-424b-b02b-cf50aeb3b552/download |
bitstream.checksum.fl_str_mv |
db3859b464e597b571fce8c3999cb8ed |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100893820256256 |
spelling |
Silva Urrego, Yimmy Fernandob845fa87e7617cdfaf5669735dcc5a77500Delvasto, Silviofbd746a9a778aedf68ff9d542e975e903002020-02-03 00:00:002022-06-17T20:20:38Z2020-02-03 00:00:002022-06-17T20:20:38Z2020-02-031794-1237https://repository.eia.edu.co/handle/11190/510310.24050/reia.v17i33.13612463-0950https://doi.org/10.24050/reia.v17i33.1361En este trabajo se presentan resultados de un estudio experimental sobre la resistencia al ataque externo de sulfato de sodio (Na2SO4) en concretos autocompactantes (CACs) con residuo de mampostería (RM). Los CACs presentaban un contenido de agua constante de 202,5 kg/m3 y diferentes volúmenes de RM (0%, 25% Y 50%) como reemplazo parcial de cemento Portland (OPC) expuesto a una solución de sulfato de sodio al 5%. Las propiedades en estado fresco como fluidez, capacidad de paso y resistencia a la segregación se evaluaron mediante el flujo de asentamiento, embudo en V y caja en L. En estado endurecido, la resistencia a la compresión y expansión fueron determinadas. Por otra parte, técnicas de difracción de rayos X (DRX), microscopia electrónica de barrido (MEB) y espectroscopia de Infrarrojo con transformada de Fourier (FTIR) fueron aplicadas en pastas para investigar los efectos de los sulfatos sobre la microestructura. Los resultados mostraron que todas las mezclas cumplen las propiedades en estado fresco, además se encontró que cuando los CACs son inmersos en la solución de sulfato de sodio, el RM puede mejorar la resistencia de los CACs al ataque por sulfatos en comparación con el CAC solo de OPC.In this paper are shown the results of an experimental study of self compacting concretes with residue of masonry about their resistance to external sulfate attack, they presented a constant content of water of 202,5 kg/m3 and different volumes of RM (0%, 25% Y 50%) as a partial replacement of Portland cement (OPC) exposed to a sulfate sodium solution at 5%. The properties in fresh state as fluidity, passing ability and resistance to segregation were evaluated through slump flow, V-funnel and L-box. In hard state, the compression strength and expansion were determinate. Besides, techniques of X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were applied to pastes in order to investigate the effects of sulfates on the microstructure. The results showed that all mixes have the properties onfresh state. Also, it was found that when CACs areexposed in a sodium sulfate solution, the RM can improve the resistance of CACs to the sulfates attack comparing with CAC only of OPC.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1361Residuo de mamposteríaConcreto autocompactanteSulfatosExpansiónEtringita.ceramico / materiales compuestosResidue of masonrySelf-compacting concreteSulfatesExpansionEttringiteInfluencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodioInfluence of masonry residue on the resistance of self-compacting concrete to the sodium sulfate attackArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Abd Elaty, M.A.A.; Ghazy M.F. (2018). Fluidity evaluation of fiber reinforced-self compacting concrete based on buoyancy law. HBRC Journal, 14, pp. 368-378. https://doi.org/10.1016/j.hbrcj.2017.04.003.Asensio de Lucas, E.; Medina, C.; Frías, M.; Sánchez de Rojas, M.I. (2016). Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance. Construction and Building Materials, 127, pp. 950-058. https://doi.org/10.1016/j.conbuildmat.2016.10.047.Bonavetti, V.L.; Rahhal, V.F. (2006). Interacción de adiciones minerales en pastas de cemento. Revista de la Construccion, 52 (268), pp. 57-64. https://repositorio.uc.cl/handle/11534/11378Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. (2015). Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 99, pp. 59-74. https://doi.org/10.1016/j.jclepro.2015.03.012.Bulatović, V.; Melešev, M.; Radeka, M.; Radonjanin, V.; Lukić, I. (2019). Evaluation of sulfate resistance of concrete with recycled and natural aggregates, Construction and Building Materials. 152, pp. 614-631. http://dx.doi.org/10.1016/j.conbuildmat.2017.06.161.Cai, R.; He, Z.; Tang, S.; Wu, T.; Chen, E. (2018). The early hydration of metakaolin blended cements by non-contact impedance measurement. Cement and Concrete Composites, 92, pp. 70-81. https://doi.org/10.1016/j.cemconcomp.2018.06.001.Chen, F.; Gao, J.; Qi, B.; Shen, D. (2019). Deterioration mechanism of plain and blended cement mortars partially exposed to sulfate attack. Construction and Building Materials, 154, pp. 849-856. https://doi.org/10.1016/j.conbuildmat.2017.08.017.Choudhary, H.K.; A.V. A.; Kumar, R.; Panzi, M.E.; Matteppanavar, S.; Sherikar, B.N.; Sahoo, B. (2015). Observation of phase transformations in cement during hydratation. Construction and Building Materials, 101, pp. 122-129. https://doi.org/10.1016/j.conbuildmat.2015.10.027.EFNARC (2002). Specification and guidelines for self-compacting concrete. European association for producers and applicators of specialist building products. http://www.efnarc.org/pdf/SandGforSCC.PDFEPG (2005). BIBM, CEMBUREAU, ERMCO, EFCA, EFNARC. The European guidelines for self compacting concrete: specification, production and use. The Self-Compacting Concrete European Project Group. http://www.efca.info/download/european-guidelines-for-self-compacting-concrete-sccErcikdi, B.; Külekci, G.; Yılmaz, T. (2015). Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings. Construction and Building Materials, 93, pp. 573–583. http://dx.doi.org/10.1016/j.conbuildmat.2015.06.042Gálvez-Martos, J.L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. (2018). Construction and demolition waste best management practice in Europe. Resources, Conservation & Recycling, 136, pp. 166–178. https://doi.org/10.1016/j.resconrec.2018.04.016.Gill, A.S.; Siddique, R. (2018). Durability properties of self compacting concrete incorporating metakaolin and rice husk ash. Construction and Building Materials, 176, pp. 323-332. https://doi.org/10.1016/j.conbuildmat.2018.05.054.Gülsan, M.E.; Alzeebaree, R.; Rasheed, A. A.; Nis, A.; Kurtoğlu, A.E. (2019). Development of fly ash/slag based self compacting geopolymer concrete using nano-silica and steel fiber. Construction and Building Materials, 211, pp. 271-283. https://doi.org/10.1016/j.conbuildmat.2019.03.228Irbe, L.; Beddoe, R.E.; Heinz, D. (2019). The role of aluminium in C-A-S-H during sulfate attack on concrete. Cement and Concrete Research, 116, pp. 71-80. https://doi.org/10.1016/j.cemconres.2018.11.012Islam, R.; Nazifa, T.H.; Yuniarto, A.; Uddin, A.S.M.S.; Salmiati, S.; Shahid, S. (2019). An empirical study of construction and demolition waste generation and implication of recycling. Waste Management, 95, pp. 10–21. https://doi.org/10.1016/j.wasman.2019.05.049Kulkarni, N.G.; Rao, A.B. (2016). Carbon footprint of solid clay bricks fired in clamps of India. Journal of Cleaner Production, 135, pp. 1396-1406. https://doi.org/10.1016/j.jclepro.2016.06.152Li, B.; Cao, R.; You, N.; Chen, C.; Zhang, Y. (2019). Products and properties of steam cured cement mortar containing lithium slag under partial immersion in sulfate solution. Construction and Building Materials, 220, pp. 596-606. https://doi.org/10.1016/j.conbuildmat.2019.06.062Li, H.; Dong, L.; Jiang, Z., Yang, X.; Yang, Z. (2016). Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls. Journal of Cleaner Production, 133, pp. 1017- 1026. [Online] Disponible en: https://doi.org/10.1016/j.jclepro.2016.05.149. [Consultado 1 de octubre 2019].Lin, K.L.; Chen, B.Y.; Chiou, C.S.; Cheng, A. (2010). Waste brick’s potential for use as a pozzolan in blended Portland cement. Waste Management & Research, 28, pp. 647-652. https://doi.org/10.1177/0734242X09355853Liu, C.; Gao, J.; Chen, F.; Zhao, Y.; Chen, X.; He, Z. (2019). Coupled effect of relative humidity and temperature on the degradation of cement mortars partially exposed to sulfate attack. Construction and Building Materials, 216, pp. 93-100. https://doi.org/10.1016/j.conbuildmat.2019.05.001Liu, T.; Teng, J.; Yan, G. (2012). The influence of sulfate attack on the dynamic properties of concrete column. Construction and Building Materials, 28, pp. 201-207. https://doi.org/10.1016/j.conbuildmat.2011.08.036Majhi, R.K.; Nayak, A.N. (2019). Bond, durability and microstructural characteristics of ground granulated blast furnace slag baased recycled aggregate concrete. Construction and Building Materials, 212, pp. 578-595. https://doi.org/10.1016/j.conbuildmat.2019.04.017Mohammed S. (2017). Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review, Construction and Building Materials, 140, pp. 10–19. https://doi.org/10.1016/j.conbuildmat.2017.02.078Muduli, R.; Mukharjee, B.B. (2019). Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete, Journal of Cleaner Production. 209, pp. 398-414. https://doi.org/10.1016/j.jclepro.2018.10.221NRMCA (2004). CIP 37 – Self Consolidating Concrete (SCC). https://www.nrmca.org/aboutconcrete/cips/37p.pdfSanthanam, M.; Cohen, M.D.; Olek, J. (2002). Mechanism of sulfate attack: A fresh look Part 1: Summary of experimental results. Cement and Concrete Research, 32, pp. 915 – 921. https://doi.org/10.1016/S0008-8846(02)00724-XSanthanam, M.; Cohen, M.D.; Olek, J. (2003). Mechanism of sulfate attack: a fresh look Part 2. Proposed mechanisms. Cement and Concrete Research, 33, pp. 341 – 346. https://doi.org/10.1016/S0008-8846(02)00958-4Schackow, A.; Stringari, D.; Senff, L.; Correia, S.L.; Segadães, A.M. (2015). Influence of fired clay brick waste additions on the durability of mortars. Cement & Concrete Composites, 62, pp. 82–89. http://dx.doi.org/10.1016/j.cemconcomp.2015.04.019Shaheen, F.; Pradhan, B. (2017). Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cement and Concrete Research, 91, pp. 73-86. https://doi.org/10.1016/j.cemconres.2016.10.008Sikandar, M.A.; Ahmad, W.; Khan, M.H.; Ali, F.; Waseem, M. Effect of water resistant SiO2 coated SrAl2O4: Eu2+ Dy3+ persistent luminescence phosphor on the properties of Portland cement pastes. Construction and Building Materials, 228, 116823. https://doi.org/10.1016/j.conbuildmat.2019.116823.Silva, G.; Castañeda, D.; Kim, S.; Castañeda, A.; Bertolotti, B.; Ortega-San-Martin, L.; Nakamatsu, J.; Aguilar, R. (2019). Analysis of the production conditions of geopolymer matrices from natural pozzolana and fired clay brick wastes. Construction and Building Materials, 215, pp. 633-643. https://doi.org/10.1016/j.conbuildmat.2019.04.247Silva, Y.F.; Izquierdo, S.R.; Delvasto, S. (2019). Effect of masonry residue on the hydration of Portland cement paste. Revista DYNA, 86(209), pp. 367-377. http://doi.org/10.15446/dyna.v86n209.77286Skaropoulou, A.; Sotiriadis, K.; Kakali, G.; Tsivilis, S. (2013). Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack. Cement & Concrete Composites, 36, pp. 267-275. https://doi.org/10.1016/j.cemconcomp.2013.01.007Tang, Z.; Li, W.; Ke, G.; Zhou, J.L.; Tam, V.W.Y. (2019). Sulfate attack resistance of sustainable concrete incorporating various industrial solid waste. Journal of Cleaner Production, 218, pp. 810-822. https://doi.org/10.1016/j.jclepro.2019.01.337Wong, C.L.; Mo, K.H.; Yap, S.P.; Alengaram, U.J. (2018). Potential use of brick waste as alternate concrete-making materials: A review. Journal of Cleaner Production, 195, pp. 226-239. https://doi.org/10.1016/j.jclepro.2018.05.193Zhang Y.; Luo W.; Wang J.; Wang Y.; Xu Y.; Xiao J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, pp. 115-125. https://doi.org/10.1016/j.conbuildmat.2019.03.078https://revistas.eia.edu.co/index.php/reveia/article/download/1361/1282Núm. 33 , Año 2020143333014 pp. 117Revista EIAPublicationOREORE.xmltext/xml2649https://repository.eia.edu.co/bitstreams/f2d3591b-dfed-424b-b02b-cf50aeb3b552/downloaddb3859b464e597b571fce8c3999cb8edMD5111190/5103oai:repository.eia.edu.co:11190/51032023-07-25 17:04:18.278https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |