Tratamiento de aguas residuales de la industria del café soluble vía Electrocoagulación - Oxidación Anódica. Selección de los electrodos
La industria del café soluble genera aguas residuales que contienen mezclas complejas de sustancias difíciles de degradar. Su mineralización no es completamente efectiva mediante tratamientos convencionales. En este trabajo, se estudia un proceso secuencial de electrocoagulación - oxidación anódica...
- Autores:
-
Dobrosz-Gomez, Izabela
Gómez García, Miguel Angel
Ibarra Taquez, Harold Norbey
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5085
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5085
https://doi.org/10.24050/reia.v17i34.1328
- Palabra clave:
- Aguas residuales industriales
Café soluble
Procesos Avanzados de Oxidación
Electrocoagulación
Oxidación anódica
Análisis de costos operacionales
tratamiento de aguas residuales industriales
Industrial wastewater
Soluble coffee
Advanced Oxidation Process
Electrocoagulation
Anodic oxidation
Operational cost analysis
- Rights
- openAccess
- License
- Revista EIA - 2020
id |
REIA2_f3d94caf802d1539d0ceeb5526462ac5 |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/5085 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Tratamiento de aguas residuales de la industria del café soluble vía Electrocoagulación - Oxidación Anódica. Selección de los electrodos |
dc.title.translated.eng.fl_str_mv |
The treatment of industrial wastewater originated from soluble coffee production via electrocoagulation - anodic oxidation. Electrodes selection |
title |
Tratamiento de aguas residuales de la industria del café soluble vía Electrocoagulación - Oxidación Anódica. Selección de los electrodos |
spellingShingle |
Tratamiento de aguas residuales de la industria del café soluble vía Electrocoagulación - Oxidación Anódica. Selección de los electrodos Aguas residuales industriales Café soluble Procesos Avanzados de Oxidación Electrocoagulación Oxidación anódica Análisis de costos operacionales tratamiento de aguas residuales industriales Industrial wastewater Soluble coffee Advanced Oxidation Process Electrocoagulation Anodic oxidation Operational cost analysis |
title_short |
Tratamiento de aguas residuales de la industria del café soluble vía Electrocoagulación - Oxidación Anódica. Selección de los electrodos |
title_full |
Tratamiento de aguas residuales de la industria del café soluble vía Electrocoagulación - Oxidación Anódica. Selección de los electrodos |
title_fullStr |
Tratamiento de aguas residuales de la industria del café soluble vía Electrocoagulación - Oxidación Anódica. Selección de los electrodos |
title_full_unstemmed |
Tratamiento de aguas residuales de la industria del café soluble vía Electrocoagulación - Oxidación Anódica. Selección de los electrodos |
title_sort |
Tratamiento de aguas residuales de la industria del café soluble vía Electrocoagulación - Oxidación Anódica. Selección de los electrodos |
dc.creator.fl_str_mv |
Dobrosz-Gomez, Izabela Gómez García, Miguel Angel Ibarra Taquez, Harold Norbey |
dc.contributor.author.spa.fl_str_mv |
Dobrosz-Gomez, Izabela Gómez García, Miguel Angel Ibarra Taquez, Harold Norbey |
dc.subject.spa.fl_str_mv |
Aguas residuales industriales Café soluble Procesos Avanzados de Oxidación Electrocoagulación Oxidación anódica Análisis de costos operacionales tratamiento de aguas residuales industriales |
topic |
Aguas residuales industriales Café soluble Procesos Avanzados de Oxidación Electrocoagulación Oxidación anódica Análisis de costos operacionales tratamiento de aguas residuales industriales Industrial wastewater Soluble coffee Advanced Oxidation Process Electrocoagulation Anodic oxidation Operational cost analysis |
dc.subject.eng.fl_str_mv |
Industrial wastewater Soluble coffee Advanced Oxidation Process Electrocoagulation Anodic oxidation Operational cost analysis |
description |
La industria del café soluble genera aguas residuales que contienen mezclas complejas de sustancias difíciles de degradar. Su mineralización no es completamente efectiva mediante tratamientos convencionales. En este trabajo, se estudia un proceso secuencial de electrocoagulación - oxidación anódica (EC-OA) como alternativa de tratamiento. En específico, se evaluó experimentalmente el efecto del material del electrodo (v.g., dos ánodos (grafito y Diamante Dopado con Boro (DDB)) y seis cátodos (acero inoxidable, titanio, hierro, aluminio, grafito y DDB)) y del electrolito de soporte (NaCl o Na2SO4) sobre el rendimiento de degradación en términos de la reducción de color y de la demanda química de oxígeno (DQO), así como de la formación de sólidos suspendidos totales (SST). Los resultados obtenidos fueron comparados con la última regulación ambiental colombiana. Adicionalmente, para cada caso, se realizó un análisis integral de los costos operacionales. Toda la información anterior permitió seleccionar dos sistemas de electrodos como los más prometedores para la etapa de OA: DDB-acero inoxidable + Na2SO4: muy eficiente pero costoso (reducción de DQO = 75% y 12 USD/m3) y grafito-acero inoxidable + NaCl: menos eficiente y más económico (reducción de DQO = 67% y 7 USD/m3). |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-06-21 00:00:00 2022-06-17T20:20:23Z |
dc.date.available.none.fl_str_mv |
2020-06-21 00:00:00 2022-06-17T20:20:23Z |
dc.date.issued.none.fl_str_mv |
2020-06-21 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/5085 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v17i34.1328 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v17i34.1328 |
identifier_str_mv |
1794-1237 10.24050/reia.v17i34.1328 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/5085 https://doi.org/10.24050/reia.v17i34.1328 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aguas De Manizales S.A. E.S.P.; 2016. Estudio de factibilidad para la recuperación y mantenimiento de la calidad de la cuenca del rio Chinchiná, URL: http://cort.as/-Itaf (acceso: 29-05-19). APHA. 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington: Centennial edition Cardenas, A., Zayas, T., Morales, U., Salgado, L., 2009. Electrochemical Oxidation of Wastewaters from the Instant Coffee Industry Using a Dimensionally Stable RuIrCoOx Anode. ECS Trans. 20, 291-299. Clarke, R.J., Macrae, R., 1985. Coffee: Chemistry, 1st Edition. Ed. Elsevier Applied Science, London pp 45-58. Couto, R.M., Fernandes, J., da Silva, M.D.R.G., Simoes, P.C., 2009. Supercritical fluid extraction of lipids from spent coffee grounds. J. Supercrit. Fluids 51, 159-166. https://doi.org/10.1002/elsc.200900074 Departamento Administrativo Nacional de Estadística DANE; 2018. Variación mensual del IPC por grupos de bienes y servicios 2017-2018. URL: http://cort.as/-ItaI (acceso: 29-05-19). Dinsdale, R.M., Hawkes, F.R., Hawkes, D.L., 1996. The mesophilic and thermophilic anaerobic digestion of coffee waste containing coffee grounds. Water Res. 30, 371-377. https://doi.org/10.1016/0043-1354(95)00157-3 Dinsdale, R.M., Hawkes, F.R., Hawkes, D.L., 1997. Comparison of mesophilic and thermophilic upflow anaerobic sludge blanket reactors treating instant coffee production wastewater. Water Res. 31, 163-169. http://dx.doi.org/10.1016/S0043-1354(96)00233-3. EPM; 2018. Tarifas y Costo de Energía Eléctrica - Mercado Regulado. URL: http://cort.as/-Ita- (acceso: 29-05-19). Farah, A., 2012. Coffee Constituents, en: Coffee: Emerging Health Effects and Disease Prevention. Wiley- Blackwell, Oxford, pp. 21-58. http://dx.doi.org/10.1002/9781119949893.ch2. Federación Nacional de Cafeteros de Colombia, 2019. Información estadística cafetera. URL: http://cort.as/-ItZc (accedido 29/05/19) Fernandez, N., Forster, C.F., 1993. A study of the operation of mesophilic and thermophilic anaerobic filters treating a synthetic coffee waste. Bioresour. Technol. 45, 223-227. http://dx.doi.org/10.1016/0960-8524(93)90115-R. Ibarra-Taquez, H.N., GilPavas, E., Blatchley, E.R., Gómez-García, M.Á., Dobrosz-Gómez, I., 2017. Integrated electrocoagulation-electrooxidation process for the treatment of soluble coffee effluent: Optimization of COD degradation and operation time analysis. J. Environ. Manage. 200, 530–538, http://dx.doi.org/10.1016/j.jenvman.2017.05.095 Ibarra-Taquez, H.N., Gómez-García, M.Á., Dobrosz-Gómez, I., 2018. Optimización multiobjetivo del proceso fenton en el tratamiento de aguas residuales provenientes de la producción de café soluble. Información Tecnológica, 29 (5), 111 – 122, http://dx.doi.org/10.4067/S0718-07642018000500111 Kondamudi, N., Mohapatra, S.K., Misra, M., 2008. Spent Coffee Grounds as a Versatile Source of Green Energy. J. Agric. Food Chem. 56, 11757-11760. https://doi.org/10.1021/jf802487s Marketwatch (2019). Instant Coffee Market 2019 Global Key Players Analysis, Sales, Supply, Demand and Forecast to 2025, URL: http://cort.as/-ItZD Panchangam, S.C., Janakiraman, K., 2015. Decolorization of aqueous coffee and tea infusions by chemical coagulation. Desalin. Water Treat. 53, 119-125. http://dx.doi.org/10.1080/19443994.2013.860401 Radjenovic, J., Sedlak, D.L., 2015. Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water. Environ. Sci. Technol. 49, 11292-11302. http://dx.doi.org/10.1021/acs.est.5b02414. Tokumura, M., Ohta, A., Znad, H.T., Kawase, Y., 2006. UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction. Water Res. 40, 3775-3784. http://dx.doi.org/10.1016/j.watres.2006.08.012 Tokumura, M., Znad, H.T., Kawase, Y., 2008. Decolorization of dark brown colored coffee effluent by solar photo-Fenton reaction: effect of solar light dose on decolorization kinetics. Water Res. 42, 4665-4673. http://dx.doi.org/10.1016/j.watres.2008.08.007. United States Department of Agriculture. 2018. Soluble Coffee Exports. http://cort.as/-Itc- (accedido 29/05/19) Zayas Pérez, T., Geissler, G., Hernandez, F., 2007. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. J. Environ. Sci. (China) 19, 300-305. |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1328/1337 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 34 , Año 2020 |
dc.relation.citationendpage.none.fl_str_mv |
17 |
dc.relation.citationissue.spa.fl_str_mv |
34 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
17 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2020 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2020 https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1328 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/88417660-c89e-43b7-a8e9-9b44d3891f7e/download |
bitstream.checksum.fl_str_mv |
7ba57a7d10ba895c52600eb6308d0d28 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100909968326656 |
spelling |
Dobrosz-Gomez, Izabelafb00dfbdaae98fec033b466c97c518bf300Gómez García, Miguel Angel5257a041aeeaa430d798f3a076eb19c8300Ibarra Taquez, Harold Norbey71051a988e0b87d657783b9ea8af1fbe3002020-06-21 00:00:002022-06-17T20:20:23Z2020-06-21 00:00:002022-06-17T20:20:23Z2020-06-211794-1237https://repository.eia.edu.co/handle/11190/508510.24050/reia.v17i34.13282463-0950https://doi.org/10.24050/reia.v17i34.1328La industria del café soluble genera aguas residuales que contienen mezclas complejas de sustancias difíciles de degradar. Su mineralización no es completamente efectiva mediante tratamientos convencionales. En este trabajo, se estudia un proceso secuencial de electrocoagulación - oxidación anódica (EC-OA) como alternativa de tratamiento. En específico, se evaluó experimentalmente el efecto del material del electrodo (v.g., dos ánodos (grafito y Diamante Dopado con Boro (DDB)) y seis cátodos (acero inoxidable, titanio, hierro, aluminio, grafito y DDB)) y del electrolito de soporte (NaCl o Na2SO4) sobre el rendimiento de degradación en términos de la reducción de color y de la demanda química de oxígeno (DQO), así como de la formación de sólidos suspendidos totales (SST). Los resultados obtenidos fueron comparados con la última regulación ambiental colombiana. Adicionalmente, para cada caso, se realizó un análisis integral de los costos operacionales. Toda la información anterior permitió seleccionar dos sistemas de electrodos como los más prometedores para la etapa de OA: DDB-acero inoxidable + Na2SO4: muy eficiente pero costoso (reducción de DQO = 75% y 12 USD/m3) y grafito-acero inoxidable + NaCl: menos eficiente y más económico (reducción de DQO = 67% y 7 USD/m3).The industry of soluble coffee generates wastewater containing complex and hard to degrade mixtures of different substances. Their mineralization is not completely effective through conventional treatment methods. In this work, as a treatment alternative, a sequential Electrocoagulation-Anodic Oxidation (EC-AO) process is studied. The effect of electrode material (v.g., two different anodes (graphite and Boron-Doped Diamond (BDD)) and six different cathodes (stainless steel, titanium, iron, aluminum, graphite and BDD)) and of support electrolyte (NaCl or Na2SO4) on degradation performance of AO, in the terms of color and chemical oxygen demand (COD) reduction, as well as Total Suspended Solids (TSS) formation and pH, were experimentally tested. The obtained results were compared with the most recent Colombian environmental regulation. Additionally, for each case, a comprehensive operational costs analysis was performed. All the above information allowed to select two electrode systems as the most promising for the AO step: BDD-stainless steel + Na2SO4: very efficient but expensive (reduction of COD = 75% and 12 USD/ m3) and graphite-stainless steel + NaCl: less efficient and more economic one (reduction of COD = 67% and 7 USD/m3).application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1328Aguas residuales industrialesCafé solubleProcesos Avanzados de OxidaciónElectrocoagulaciónOxidación anódicaAnálisis de costos operacionalestratamiento de aguas residuales industrialesIndustrial wastewaterSoluble coffeeAdvanced Oxidation ProcessElectrocoagulationAnodic oxidationOperational cost analysisTratamiento de aguas residuales de la industria del café soluble vía Electrocoagulación - Oxidación Anódica. Selección de los electrodosThe treatment of industrial wastewater originated from soluble coffee production via electrocoagulation - anodic oxidation. Electrodes selectionArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Aguas De Manizales S.A. E.S.P.; 2016. Estudio de factibilidad para la recuperación y mantenimiento de la calidad de la cuenca del rio Chinchiná, URL: http://cort.as/-Itaf (acceso: 29-05-19).APHA. 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington: Centennial editionCardenas, A., Zayas, T., Morales, U., Salgado, L., 2009. Electrochemical Oxidation of Wastewaters from the Instant Coffee Industry Using a Dimensionally Stable RuIrCoOx Anode. ECS Trans. 20, 291-299.Clarke, R.J., Macrae, R., 1985. Coffee: Chemistry, 1st Edition. Ed. Elsevier Applied Science, London pp 45-58.Couto, R.M., Fernandes, J., da Silva, M.D.R.G., Simoes, P.C., 2009. Supercritical fluid extraction of lipids from spent coffee grounds. J. Supercrit. Fluids 51, 159-166. https://doi.org/10.1002/elsc.200900074Departamento Administrativo Nacional de Estadística DANE; 2018. Variación mensual del IPC por grupos de bienes y servicios 2017-2018. URL: http://cort.as/-ItaI (acceso: 29-05-19).Dinsdale, R.M., Hawkes, F.R., Hawkes, D.L., 1996. The mesophilic and thermophilic anaerobic digestion of coffee waste containing coffee grounds. Water Res. 30, 371-377. https://doi.org/10.1016/0043-1354(95)00157-3Dinsdale, R.M., Hawkes, F.R., Hawkes, D.L., 1997. Comparison of mesophilic and thermophilic upflow anaerobic sludge blanket reactors treating instant coffee production wastewater. Water Res. 31, 163-169. http://dx.doi.org/10.1016/S0043-1354(96)00233-3. EPM; 2018. Tarifas y Costo de Energía Eléctrica - Mercado Regulado. URL: http://cort.as/-Ita- (acceso: 29-05-19).Farah, A., 2012. Coffee Constituents, en: Coffee: Emerging Health Effects and Disease Prevention. Wiley- Blackwell, Oxford, pp. 21-58. http://dx.doi.org/10.1002/9781119949893.ch2.Federación Nacional de Cafeteros de Colombia, 2019. Información estadística cafetera. URL: http://cort.as/-ItZc (accedido 29/05/19)Fernandez, N., Forster, C.F., 1993. A study of the operation of mesophilic and thermophilic anaerobic filters treating a synthetic coffee waste. Bioresour. Technol. 45, 223-227. http://dx.doi.org/10.1016/0960-8524(93)90115-R.Ibarra-Taquez, H.N., GilPavas, E., Blatchley, E.R., Gómez-García, M.Á., Dobrosz-Gómez, I., 2017. Integrated electrocoagulation-electrooxidation process for the treatment of soluble coffee effluent: Optimization of COD degradation and operation time analysis. J. Environ. Manage. 200, 530–538, http://dx.doi.org/10.1016/j.jenvman.2017.05.095Ibarra-Taquez, H.N., Gómez-García, M.Á., Dobrosz-Gómez, I., 2018. Optimización multiobjetivo del proceso fenton en el tratamiento de aguas residuales provenientes de la producción de café soluble. Información Tecnológica, 29 (5), 111 – 122, http://dx.doi.org/10.4067/S0718-07642018000500111Kondamudi, N., Mohapatra, S.K., Misra, M., 2008. Spent Coffee Grounds as a Versatile Source of Green Energy. J. Agric. Food Chem. 56, 11757-11760. https://doi.org/10.1021/jf802487sMarketwatch (2019). Instant Coffee Market 2019 Global Key Players Analysis, Sales, Supply, Demand and Forecast to 2025, URL: http://cort.as/-ItZDPanchangam, S.C., Janakiraman, K., 2015. Decolorization of aqueous coffee and tea infusions by chemical coagulation. Desalin. Water Treat. 53, 119-125. http://dx.doi.org/10.1080/19443994.2013.860401Radjenovic, J., Sedlak, D.L., 2015. Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water. Environ. Sci. Technol. 49, 11292-11302. http://dx.doi.org/10.1021/acs.est.5b02414.Tokumura, M., Ohta, A., Znad, H.T., Kawase, Y., 2006. UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction. Water Res. 40, 3775-3784. http://dx.doi.org/10.1016/j.watres.2006.08.012Tokumura, M., Znad, H.T., Kawase, Y., 2008. Decolorization of dark brown colored coffee effluent by solar photo-Fenton reaction: effect of solar light dose on decolorization kinetics. Water Res. 42, 4665-4673. http://dx.doi.org/10.1016/j.watres.2008.08.007.United States Department of Agriculture. 2018. Soluble Coffee Exports. http://cort.as/-Itc- (accedido 29/05/19)Zayas Pérez, T., Geissler, G., Hernandez, F., 2007. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. J. Environ. Sci. (China) 19, 300-305.https://revistas.eia.edu.co/index.php/reveia/article/download/1328/1337Núm. 34 , Año 20201734117Revista EIAPublicationOREORE.xmltext/xml2767https://repository.eia.edu.co/bitstreams/88417660-c89e-43b7-a8e9-9b44d3891f7e/download7ba57a7d10ba895c52600eb6308d0d28MD5111190/5085oai:repository.eia.edu.co:11190/50852023-07-25 17:14:54.192https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |