Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry
A matrix formulation is presented for the solution of frictionless contact problems on arbitrarily multilayered piezoelectric half-planes. Different arrangements of elastic and transversely orthotropic piezoelectric materials within the multilayered medium are considered. A generalized plane deforma...
- Autores:
-
Ramirez, G. (Guillermo)
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2004
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eia.edu.co:11190/535
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/535
- Palabra clave:
- REI00015
ENERGÍA
ENERGY
TRANSFORMACIONES DE FOURIER
FOURIER TRANSFORMATIONS
PIEZOELECTRICITY
CONTACT PRESSURE
MULTILAYERED HALF-PLANE
PIEZOELECTRICIDAD
PRESIÓN DE CONTACTO
SEMIPLANO DE VARIAS CAPAS
- Rights
- openAccess
- License
- Derechos Reservados - Universidad EIA, 2020
id |
REIA2_f0cb96e0fd0e86058a0409ec7dacddcd |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/535 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry |
title |
Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry |
spellingShingle |
Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry REI00015 ENERGÍA ENERGY TRANSFORMACIONES DE FOURIER FOURIER TRANSFORMATIONS PIEZOELECTRICITY CONTACT PRESSURE MULTILAYERED HALF-PLANE PIEZOELECTRICIDAD PRESIÓN DE CONTACTO SEMIPLANO DE VARIAS CAPAS |
title_short |
Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry |
title_full |
Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry |
title_fullStr |
Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry |
title_full_unstemmed |
Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry |
title_sort |
Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry |
dc.creator.fl_str_mv |
Ramirez, G. (Guillermo) |
dc.contributor.author.spa.fl_str_mv |
Ramirez, G. (Guillermo) |
dc.subject.lcsh.spa.fl_str_mv |
REI00015 |
topic |
REI00015 ENERGÍA ENERGY TRANSFORMACIONES DE FOURIER FOURIER TRANSFORMATIONS PIEZOELECTRICITY CONTACT PRESSURE MULTILAYERED HALF-PLANE PIEZOELECTRICIDAD PRESIÓN DE CONTACTO SEMIPLANO DE VARIAS CAPAS |
dc.subject.eia.spa.fl_str_mv |
ENERGÍA ENERGY |
dc.subject.eurovoc.spa.fl_str_mv |
TRANSFORMACIONES DE FOURIER FOURIER TRANSFORMATIONS |
dc.subject.keywords.spa.fl_str_mv |
PIEZOELECTRICITY CONTACT PRESSURE MULTILAYERED HALF-PLANE PIEZOELECTRICIDAD PRESIÓN DE CONTACTO SEMIPLANO DE VARIAS CAPAS |
description |
A matrix formulation is presented for the solution of frictionless contact problems on arbitrarily multilayered piezoelectric half-planes. Different arrangements of elastic and transversely orthotropic piezoelectric materials within the multilayered medium are considered. A generalized plane deformation is used to obtain the governing equilibrium equations for each individual layer. These equations are solved using the infinite Fourier transform technique. The problem is then reformulated using the local/global stiffness method, in which a local stiffness matrix relating the stresses and electric displacement to the mechanical displacements and electric potential in the transformed domain is formulated for each layer. Then it is assembled into a global stiffness matrix for the entire half-plane by enforcing interfacial continuity of tractions and displacements. This local/global stiffness approach not only eliminates the necessity of explicitly finding the unknown Fourier coefficients, but also allows the use of efficient numerical algorithms, many of which have been developed for finite element analysis. Unlike finite element methods, the present approach requires minimal input. Application of the mixed boundary conditions reduces the problem to an integral equation. This integral equation is numerically solved for the unknown contact pressure using a technique based on the Chebyshev polynomials. |
publishDate |
2004 |
dc.date.created.spa.fl_str_mv |
2004-08 |
dc.date.submitted.spa.fl_str_mv |
2004-04-19 |
dc.date.accepted.spa.fl_str_mv |
2004-08-03 |
dc.date.accessioned.spa.fl_str_mv |
2014-05-07T00:13:59Z |
dc.date.available.spa.fl_str_mv |
2014-05-07T00:13:59Z |
dc.date.issued.spa.fl_str_mv |
2014-05-06 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN 17941237 |
dc.identifier.uri.spa.fl_str_mv |
https://repository.eia.edu.co/handle/11190/535 |
dc.identifier.bibliographiccitation.spa.fl_str_mv |
Ramirez, G. Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry, Revista EIA, 2, 75-88. doi: http://repository.eia.edu.co/handle/11190/535 |
identifier_str_mv |
ISSN 17941237 Ramirez, G. Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry, Revista EIA, 2, 75-88. doi: http://repository.eia.edu.co/handle/11190/535 |
url |
https://repository.eia.edu.co/handle/11190/535 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Gladwell, G. M. L., Contact Problems in the Classical Theory of Elasticity, Sitjhoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1980. Pindera, M.-J. and M. S. Lane, Frictionless Contact of Layered Half-Planes, Part I: Analysis , Journal of Applied Mechanics, 60, 633-638, 1993. Bufler, H., Theory of Elasticity of a Multilayered Medium , Journal of Elasticity, 1,125-143, 1971. |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad EIA, 2020 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Derechos Reservados - Universidad EIA, 2020 https://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
14 p. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.department.spa.fl_str_mv |
Civil, Ambiental Geológica e Industrial |
dc.publisher.editor.spa.fl_str_mv |
Escuela de Ingeniería de Antioquia EIA |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/422d74af-b0f6-445c-a8b1-c796e9decdb2/download https://repository.eia.edu.co/bitstreams/9d9f8517-ab15-4137-be6d-fcfa57b45193/download https://repository.eia.edu.co/bitstreams/3c9b5692-74cc-43e7-aaa7-39bd80bfc93f/download https://repository.eia.edu.co/bitstreams/be3c8d4e-90ea-4afa-9482-07683c6c7b90/download https://repository.eia.edu.co/bitstreams/89803fa5-06ce-4ea8-9af3-59df661e2386/download https://repository.eia.edu.co/bitstreams/53c8edfc-cba9-4280-9192-80f9285f2351/download https://repository.eia.edu.co/bitstreams/7b1aa87a-857a-4e68-a10c-be93e480647a/download |
bitstream.checksum.fl_str_mv |
2e11506dcd8e92fc8499b7faf701e835 71c5fb59a13f91726410b1c253dec4fb 66874b0b9366b748c60895d2fb6339f8 4afdbb8c545fd630ea7db775da747b2f 10a9da7597c333616da297895d0393ec cd76e7886171c964e259dcf5e912e299 178213bd8973356b53d3090bd1655c34 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1828317377635287040 |
spelling |
Ramirez, G. (Guillermo)91670dac30d152a097afcae65cf22d30-1xxx2014-05-07T00:13:59Z2014-05-07T00:13:59Z2004-082014-05-062004-04-192004-08-03ISSN 17941237https://repository.eia.edu.co/handle/11190/535Ramirez, G. Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry, Revista EIA, 2, 75-88. doi: http://repository.eia.edu.co/handle/11190/535A matrix formulation is presented for the solution of frictionless contact problems on arbitrarily multilayered piezoelectric half-planes. Different arrangements of elastic and transversely orthotropic piezoelectric materials within the multilayered medium are considered. A generalized plane deformation is used to obtain the governing equilibrium equations for each individual layer. These equations are solved using the infinite Fourier transform technique. The problem is then reformulated using the local/global stiffness method, in which a local stiffness matrix relating the stresses and electric displacement to the mechanical displacements and electric potential in the transformed domain is formulated for each layer. Then it is assembled into a global stiffness matrix for the entire half-plane by enforcing interfacial continuity of tractions and displacements. This local/global stiffness approach not only eliminates the necessity of explicitly finding the unknown Fourier coefficients, but also allows the use of efficient numerical algorithms, many of which have been developed for finite element analysis. Unlike finite element methods, the present approach requires minimal input. Application of the mixed boundary conditions reduces the problem to an integral equation. This integral equation is numerically solved for the unknown contact pressure using a technique based on the Chebyshev polynomials.Se presenta una formulación matricial para la solución de problemas de contacto sin fricción en semiplanos piezoeléctricos elásticos de múltiples capas. Se consideran diferentes disposiciones de materiales piezoeléctricos elásticos y transversalmente ortotrópicos dentro del medio de múltiples capas. Se usa una deformación de plano generalizada para obtener las ecuaciones gobernantes de equilibrio para cada capa individual, que se resuelven con la técnica de transformada de Fourier infinita. Entonces el problema se reformula con el método de rigidez local/global, en el cual se formula para cada capa una matriz de rigidez local que relaciona los esfuerzos y el desplazamiento eléctrico con los desplazamientos mecánicos y el potencial eléctrico en el dominio transformado. En seguida se ensambla en una matriz de rigidez global para todo el semiplano imponiendo la continuidad interfacial de tracciones y desplazamientos. Este enfoque por rigidez local/global no sólo elimina la necesidad de hallar explícitamente los coeficientes de Fourier desconocidos, sino que también permite el uso de algoritmos numéricos eficientes, muchos de los cuales se desarrollaron para análisis por elementos finitos. A diferencia de los métodos de elementos finitos, este enfoque requiere una entrada miníma. El uso de condiciones de borde mezcladas reduce el problema a una ecuación integral, que se resuelve para la presión de contacto desconocida con una técnica basada en los polinomios de Chebyshev.14 p.application/pdfengDerechos Reservados - Universidad EIA, 2020https://creativecommons.org/licenses/by-nc/4.0/El autor de la obra, actuando en nombre propio, hace entrega del ejemplar respectivo y de sus anexos en formato digital o electrónico y autoriza a la ESCUELA DE INGENIERIA DE ANTIOQUIA, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995, y demás normas generales sobre la materia, utilice y use por cualquier medio conocido o por conocer, los derechos patrimoniales de reproducción, comunicación pública, transformación y distribución de la obra objeto del presente documento. PARÁGRAFO: La presente autorización se hace extensiva no sólo a las dependencias y derechos de uso sobre la obra en formato o soporte material, sino también para formato virtual, electrónico, digital, y en red, internet, extranet, intranet, etc., y en general en cualquier formato conocido o por conocer. EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realiza sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARÁGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la ESCUELA DE INGENIERÍA DE ANTIOQUIA actúa como un tercero de buena fe.info:eu-repo/semantics/openAccessAtribución-NoComercialhttp://purl.org/coar/access_right/c_abf2REI00015ENERGÍAENERGYTRANSFORMACIONES DE FOURIERFOURIER TRANSFORMATIONSPIEZOELECTRICITYCONTACT PRESSUREMULTILAYERED HALF-PLANEPIEZOELECTRICIDADPRESIÓN DE CONTACTOSEMIPLANO DE VARIAS CAPASFrictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetryArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Civil, Ambiental Geológica e IndustrialEscuela de Ingeniería de Antioquia EIAGladwell, G. M. L., Contact Problems in the Classical Theory of Elasticity, Sitjhoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1980.Pindera, M.-J. and M. S. Lane, Frictionless Contact of Layered Half-Planes, Part I: Analysis , Journal of Applied Mechanics, 60, 633-638, 1993.Bufler, H., Theory of Elasticity of a Multilayered Medium , Journal of Elasticity, 1,125-143, 1971.PublicationTHUMBNAILREI00015.pdf.jpgREI00015.pdf.jpgGenerated Thumbnailimage/jpeg13339https://repository.eia.edu.co/bitstreams/422d74af-b0f6-445c-a8b1-c796e9decdb2/download2e11506dcd8e92fc8499b7faf701e835MD57ORIGINALREI00015.pdfREI00015.pdfapplication/pdf2904421https://repository.eia.edu.co/bitstreams/9d9f8517-ab15-4137-be6d-fcfa57b45193/download71c5fb59a13f91726410b1c253dec4fbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81494https://repository.eia.edu.co/bitstreams/3c9b5692-74cc-43e7-aaa7-39bd80bfc93f/download66874b0b9366b748c60895d2fb6339f8MD52CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repository.eia.edu.co/bitstreams/be3c8d4e-90ea-4afa-9482-07683c6c7b90/download4afdbb8c545fd630ea7db775da747b2fMD53license_textlicense_texttext/html; charset=utf-821310https://repository.eia.edu.co/bitstreams/89803fa5-06ce-4ea8-9af3-59df661e2386/download10a9da7597c333616da297895d0393ecMD54license_rdflicense_rdfapplication/rdf+xml; charset=utf-823253https://repository.eia.edu.co/bitstreams/53c8edfc-cba9-4280-9192-80f9285f2351/downloadcd76e7886171c964e259dcf5e912e299MD55TEXTREI00015.pdf.txtREI00015.pdf.txtExtracted texttext/plain33022https://repository.eia.edu.co/bitstreams/7b1aa87a-857a-4e68-a10c-be93e480647a/download178213bd8973356b53d3090bd1655c34MD5611190/535oai:repository.eia.edu.co:11190/5352023-07-25 16:56:03.865https://creativecommons.org/licenses/by-nc/4.0/Derechos Reservados - Universidad EIA, 2020open.accesshttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.comRWwgYXV0b3IgZGUgbGEgb2JyYSwgYWN0dWFuZG8gZW4gbm9tYnJlIHByb3BpbywgSGFjZSBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBlbiBmb3JtYXRvIGRpZ2l0YWwgbyBlbGVjdHLDs25pY28uIAoKWSBhdXRvcml6YSBhIGxhIEVTQ1VFTEEgREUgSU5HRU5JRVJJQSBERSBBTlRJT1FVSUEsIHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuOgoKIC0gbGEgTGV5IDIzIGRlIDE5ODIKIC0gTGV5IDQ0IGRlIDE5OTMKLSBEZWNpc2nDs24gYW5kaW5hIDM1MSBkZSAxOTkzCiAtIERlY3JldG8gNDYwIGRlIDE5OTUKCiB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgcG9yIGN1YWxxdWllciBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLCBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSByZXByb2R1Y2Npw7NuLAogY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLiAKCiBQQVJHUkFGTzogTGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBzZSBoYWNlIGV4dGVuc2l2YSBubyBzb2xvIGEgbGFzIGRlcGVuZGVuY2lhcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCAKIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIHZpcnR1YWwsIGVsZWN0csOzbmljbywgZGlnaXRhbCwgeSBjdXlvIHVzbyBzZSBkZSBlbiByZWQsIGludGVybmV0LCBleHRyYW5ldCwgaW50cmFuZXQsIGV0Yy4sIHkgZW4gZ2VuZXJhbCBlbiBjdWFscXVpZXIKIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgogRUwgQVVUT1IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXphIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLAogcG9yIGxvIHRhbnRvIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuClBBUkFHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiAKY3Vlc3Rpw7NuLCBFTCBBVVRPUiwgYXN1bWlyw6HCoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhwqEgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgTGEgRVNDVUVMQSAKREUgSU5HRU5JRVJJQSBERSBBTlRJT1FVSUEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4K |