Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry

A matrix formulation is presented for the solution of frictionless contact problems on arbitrarily multilayered piezoelectric half-planes. Different arrangements of elastic and transversely orthotropic piezoelectric materials within the multilayered medium are considered. A generalized plane deforma...

Full description

Autores:
Ramirez, G. (Guillermo)
Tipo de recurso:
Article of journal
Fecha de publicación:
2004
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
eng
OAI Identifier:
oai:repository.eia.edu.co:11190/535
Acceso en línea:
https://repository.eia.edu.co/handle/11190/535
Palabra clave:
REI00015
ENERGÍA
ENERGY
TRANSFORMACIONES DE FOURIER
FOURIER TRANSFORMATIONS
PIEZOELECTRICITY
CONTACT PRESSURE
MULTILAYERED HALF-PLANE
PIEZOELECTRICIDAD
PRESIÓN DE CONTACTO
SEMIPLANO DE VARIAS CAPAS
Rights
openAccess
License
Derechos Reservados - Universidad EIA, 2020
id REIA2_f0cb96e0fd0e86058a0409ec7dacddcd
oai_identifier_str oai:repository.eia.edu.co:11190/535
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry
title Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry
spellingShingle Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry
REI00015
ENERGÍA
ENERGY
TRANSFORMACIONES DE FOURIER
FOURIER TRANSFORMATIONS
PIEZOELECTRICITY
CONTACT PRESSURE
MULTILAYERED HALF-PLANE
PIEZOELECTRICIDAD
PRESIÓN DE CONTACTO
SEMIPLANO DE VARIAS CAPAS
title_short Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry
title_full Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry
title_fullStr Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry
title_full_unstemmed Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry
title_sort Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry
dc.creator.fl_str_mv Ramirez, G. (Guillermo)
dc.contributor.author.spa.fl_str_mv Ramirez, G. (Guillermo)
dc.subject.lcsh.spa.fl_str_mv REI00015
topic REI00015
ENERGÍA
ENERGY
TRANSFORMACIONES DE FOURIER
FOURIER TRANSFORMATIONS
PIEZOELECTRICITY
CONTACT PRESSURE
MULTILAYERED HALF-PLANE
PIEZOELECTRICIDAD
PRESIÓN DE CONTACTO
SEMIPLANO DE VARIAS CAPAS
dc.subject.eia.spa.fl_str_mv ENERGÍA
ENERGY
dc.subject.eurovoc.spa.fl_str_mv TRANSFORMACIONES DE FOURIER
FOURIER TRANSFORMATIONS
dc.subject.keywords.spa.fl_str_mv PIEZOELECTRICITY
CONTACT PRESSURE
MULTILAYERED HALF-PLANE
PIEZOELECTRICIDAD
PRESIÓN DE CONTACTO
SEMIPLANO DE VARIAS CAPAS
description A matrix formulation is presented for the solution of frictionless contact problems on arbitrarily multilayered piezoelectric half-planes. Different arrangements of elastic and transversely orthotropic piezoelectric materials within the multilayered medium are considered. A generalized plane deformation is used to obtain the governing equilibrium equations for each individual layer. These equations are solved using the infinite Fourier transform technique. The problem is then reformulated using the local/global stiffness method, in which a local stiffness matrix relating the stresses and electric displacement to the mechanical displacements and electric potential in the transformed domain is formulated for each layer. Then it is assembled into a global stiffness matrix for the entire half-plane by enforcing interfacial continuity of tractions and displacements. This local/global stiffness approach not only eliminates the necessity of explicitly finding the unknown Fourier coefficients, but also allows the use of efficient numerical algorithms, many of which have been developed for finite element analysis. Unlike finite element methods, the present approach requires minimal input. Application of the mixed boundary conditions reduces the problem to an integral equation. This integral equation is numerically solved for the unknown contact pressure using a technique based on the Chebyshev polynomials.
publishDate 2004
dc.date.created.spa.fl_str_mv 2004-08
dc.date.submitted.spa.fl_str_mv 2004-04-19
dc.date.accepted.spa.fl_str_mv 2004-08-03
dc.date.accessioned.spa.fl_str_mv 2014-05-07T00:13:59Z
dc.date.available.spa.fl_str_mv 2014-05-07T00:13:59Z
dc.date.issued.spa.fl_str_mv 2014-05-06
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN 17941237
dc.identifier.uri.spa.fl_str_mv https://repository.eia.edu.co/handle/11190/535
dc.identifier.bibliographiccitation.spa.fl_str_mv Ramirez, G. Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry, Revista EIA, 2, 75-88. doi: http://repository.eia.edu.co/handle/11190/535
identifier_str_mv ISSN 17941237
Ramirez, G. Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry, Revista EIA, 2, 75-88. doi: http://repository.eia.edu.co/handle/11190/535
url https://repository.eia.edu.co/handle/11190/535
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Gladwell, G. M. L., Contact Problems in the Classical Theory of Elasticity, Sitjhoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1980.
Pindera, M.-J. and M. S. Lane, Frictionless Contact of Layered Half-Planes, Part I: Analysis , Journal of Applied Mechanics, 60, 633-638, 1993.
Bufler, H., Theory of Elasticity of a Multilayered Medium , Journal of Elasticity, 1,125-143, 1971.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad EIA, 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos Reservados - Universidad EIA, 2020
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 p.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.department.spa.fl_str_mv Civil, Ambiental Geológica e Industrial
dc.publisher.editor.spa.fl_str_mv Escuela de Ingeniería de Antioquia EIA
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/422d74af-b0f6-445c-a8b1-c796e9decdb2/download
https://repository.eia.edu.co/bitstreams/9d9f8517-ab15-4137-be6d-fcfa57b45193/download
https://repository.eia.edu.co/bitstreams/3c9b5692-74cc-43e7-aaa7-39bd80bfc93f/download
https://repository.eia.edu.co/bitstreams/be3c8d4e-90ea-4afa-9482-07683c6c7b90/download
https://repository.eia.edu.co/bitstreams/89803fa5-06ce-4ea8-9af3-59df661e2386/download
https://repository.eia.edu.co/bitstreams/53c8edfc-cba9-4280-9192-80f9285f2351/download
https://repository.eia.edu.co/bitstreams/7b1aa87a-857a-4e68-a10c-be93e480647a/download
bitstream.checksum.fl_str_mv 2e11506dcd8e92fc8499b7faf701e835
71c5fb59a13f91726410b1c253dec4fb
66874b0b9366b748c60895d2fb6339f8
4afdbb8c545fd630ea7db775da747b2f
10a9da7597c333616da297895d0393ec
cd76e7886171c964e259dcf5e912e299
178213bd8973356b53d3090bd1655c34
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1828317377635287040
spelling Ramirez, G. (Guillermo)91670dac30d152a097afcae65cf22d30-1xxx2014-05-07T00:13:59Z2014-05-07T00:13:59Z2004-082014-05-062004-04-192004-08-03ISSN 17941237https://repository.eia.edu.co/handle/11190/535Ramirez, G. Frictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetry, Revista EIA, 2, 75-88. doi: http://repository.eia.edu.co/handle/11190/535A matrix formulation is presented for the solution of frictionless contact problems on arbitrarily multilayered piezoelectric half-planes. Different arrangements of elastic and transversely orthotropic piezoelectric materials within the multilayered medium are considered. A generalized plane deformation is used to obtain the governing equilibrium equations for each individual layer. These equations are solved using the infinite Fourier transform technique. The problem is then reformulated using the local/global stiffness method, in which a local stiffness matrix relating the stresses and electric displacement to the mechanical displacements and electric potential in the transformed domain is formulated for each layer. Then it is assembled into a global stiffness matrix for the entire half-plane by enforcing interfacial continuity of tractions and displacements. This local/global stiffness approach not only eliminates the necessity of explicitly finding the unknown Fourier coefficients, but also allows the use of efficient numerical algorithms, many of which have been developed for finite element analysis. Unlike finite element methods, the present approach requires minimal input. Application of the mixed boundary conditions reduces the problem to an integral equation. This integral equation is numerically solved for the unknown contact pressure using a technique based on the Chebyshev polynomials.Se presenta una formulación matricial para la solución de problemas de contacto sin fricción en semiplanos piezoeléctricos elásticos de múltiples capas. Se consideran diferentes disposiciones de materiales piezoeléctricos elásticos y transversalmente ortotrópicos dentro del medio de múltiples capas. Se usa una deformación de plano generalizada para obtener las ecuaciones gobernantes de equilibrio para cada capa individual, que se resuelven con la técnica de transformada de Fourier infinita. Entonces el problema se reformula con el método de rigidez local/global, en el cual se formula para cada capa una matriz de rigidez local que relaciona los esfuerzos y el desplazamiento eléctrico con los desplazamientos mecánicos y el potencial eléctrico en el dominio transformado. En seguida se ensambla en una matriz de rigidez global para todo el semiplano imponiendo la continuidad interfacial de tracciones y desplazamientos. Este enfoque por rigidez local/global no sólo elimina la necesidad de hallar explícitamente los coeficientes de Fourier desconocidos, sino que también permite el uso de algoritmos numéricos eficientes, muchos de los cuales se desarrollaron para análisis por elementos finitos. A diferencia de los métodos de elementos finitos, este enfoque requiere una entrada miníma. El uso de condiciones de borde mezcladas reduce el problema a una ecuación integral, que se resuelve para la presión de contacto desconocida con una técnica basada en los polinomios de Chebyshev.14 p.application/pdfengDerechos Reservados - Universidad EIA, 2020https://creativecommons.org/licenses/by-nc/4.0/El autor de la obra, actuando en nombre propio, hace entrega del ejemplar respectivo y de sus anexos en formato digital o electrónico y autoriza a la ESCUELA DE INGENIERIA DE ANTIOQUIA, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995, y demás normas generales sobre la materia, utilice y use por cualquier medio conocido o por conocer, los derechos patrimoniales de reproducción, comunicación pública, transformación y distribución de la obra objeto del presente documento. PARÁGRAFO: La presente autorización se hace extensiva no sólo a las dependencias y derechos de uso sobre la obra en formato o soporte material, sino también para formato virtual, electrónico, digital, y en red, internet, extranet, intranet, etc., y en general en cualquier formato conocido o por conocer. EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realiza sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARÁGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la ESCUELA DE INGENIERÍA DE ANTIOQUIA actúa como un tercero de buena fe.info:eu-repo/semantics/openAccessAtribución-NoComercialhttp://purl.org/coar/access_right/c_abf2REI00015ENERGÍAENERGYTRANSFORMACIONES DE FOURIERFOURIER TRANSFORMATIONSPIEZOELECTRICITYCONTACT PRESSUREMULTILAYERED HALF-PLANEPIEZOELECTRICIDADPRESIÓN DE CONTACTOSEMIPLANO DE VARIAS CAPASFrictionless contact in a layered piezoelectric medium composed of materials with hexagonal symmetryArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Civil, Ambiental Geológica e IndustrialEscuela de Ingeniería de Antioquia EIAGladwell, G. M. L., Contact Problems in the Classical Theory of Elasticity, Sitjhoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1980.Pindera, M.-J. and M. S. Lane, Frictionless Contact of Layered Half-Planes, Part I: Analysis , Journal of Applied Mechanics, 60, 633-638, 1993.Bufler, H., Theory of Elasticity of a Multilayered Medium , Journal of Elasticity, 1,125-143, 1971.PublicationTHUMBNAILREI00015.pdf.jpgREI00015.pdf.jpgGenerated Thumbnailimage/jpeg13339https://repository.eia.edu.co/bitstreams/422d74af-b0f6-445c-a8b1-c796e9decdb2/download2e11506dcd8e92fc8499b7faf701e835MD57ORIGINALREI00015.pdfREI00015.pdfapplication/pdf2904421https://repository.eia.edu.co/bitstreams/9d9f8517-ab15-4137-be6d-fcfa57b45193/download71c5fb59a13f91726410b1c253dec4fbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81494https://repository.eia.edu.co/bitstreams/3c9b5692-74cc-43e7-aaa7-39bd80bfc93f/download66874b0b9366b748c60895d2fb6339f8MD52CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repository.eia.edu.co/bitstreams/be3c8d4e-90ea-4afa-9482-07683c6c7b90/download4afdbb8c545fd630ea7db775da747b2fMD53license_textlicense_texttext/html; charset=utf-821310https://repository.eia.edu.co/bitstreams/89803fa5-06ce-4ea8-9af3-59df661e2386/download10a9da7597c333616da297895d0393ecMD54license_rdflicense_rdfapplication/rdf+xml; charset=utf-823253https://repository.eia.edu.co/bitstreams/53c8edfc-cba9-4280-9192-80f9285f2351/downloadcd76e7886171c964e259dcf5e912e299MD55TEXTREI00015.pdf.txtREI00015.pdf.txtExtracted texttext/plain33022https://repository.eia.edu.co/bitstreams/7b1aa87a-857a-4e68-a10c-be93e480647a/download178213bd8973356b53d3090bd1655c34MD5611190/535oai:repository.eia.edu.co:11190/5352023-07-25 16:56:03.865https://creativecommons.org/licenses/by-nc/4.0/Derechos Reservados - Universidad EIA, 2020open.accesshttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.comRWwgYXV0b3IgZGUgbGEgb2JyYSwgYWN0dWFuZG8gZW4gbm9tYnJlIHByb3BpbywgSGFjZSBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBlbiBmb3JtYXRvIGRpZ2l0YWwgbyBlbGVjdHLDs25pY28uIAoKWSBhdXRvcml6YSBhIGxhIEVTQ1VFTEEgREUgSU5HRU5JRVJJQSBERSBBTlRJT1FVSUEsIHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuOgoKIC0gbGEgTGV5IDIzIGRlIDE5ODIKIC0gTGV5IDQ0IGRlIDE5OTMKLSBEZWNpc2nDs24gYW5kaW5hIDM1MSBkZSAxOTkzCiAtIERlY3JldG8gNDYwIGRlIDE5OTUKCiB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgcG9yIGN1YWxxdWllciBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLCBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSByZXByb2R1Y2Npw7NuLAogY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLiAKCiBQQVJHUkFGTzogTGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBzZSBoYWNlIGV4dGVuc2l2YSBubyBzb2xvIGEgbGFzIGRlcGVuZGVuY2lhcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCAKIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIHZpcnR1YWwsIGVsZWN0csOzbmljbywgZGlnaXRhbCwgeSBjdXlvIHVzbyBzZSBkZSBlbiByZWQsIGludGVybmV0LCBleHRyYW5ldCwgaW50cmFuZXQsIGV0Yy4sIHkgZW4gZ2VuZXJhbCBlbiBjdWFscXVpZXIKIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgogRUwgQVVUT1IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXphIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLAogcG9yIGxvIHRhbnRvIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuClBBUkFHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiAKY3Vlc3Rpw7NuLCBFTCBBVVRPUiwgYXN1bWlyw6HCoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhwqEgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgTGEgRVNDVUVMQSAKREUgSU5HRU5JRVJJQSBERSBBTlRJT1FVSUEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4K