Vehicle location models for Emergency Medical Services. An application for a Colombian company

Ambulance location, in a certain area of coverage, is a key element in reducing the waiting time of a potential patient and the initiation a healthcare service in Emergency Medical Services (EMS). The Operations Research area, developing and solving adequate mathematical models, helps to make good d...

Full description

Autores:
Zapata Murillo, Pablo
Baldoquin de la Peña, Maria Gulnara
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/5032
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5032
https://doi.org/10.24050/reia.v15i29.1211
Palabra clave:
Emergency Medical Services
hospital logistics
ambulance location
mathematical models
linear programming
mathematical models
linear programming
optimization models
Rights
openAccess
License
Revista EIA - 2018
id REIA2_eb567808fe2281c917fd9e5f1be6335f
oai_identifier_str oai:repository.eia.edu.co:11190/5032
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv Vehicle location models for Emergency Medical Services. An application for a Colombian company
dc.title.translated.eng.fl_str_mv Vehicle location models for Emergency Medical Services. An application for a Colombian company
title Vehicle location models for Emergency Medical Services. An application for a Colombian company
spellingShingle Vehicle location models for Emergency Medical Services. An application for a Colombian company
Emergency Medical Services
hospital logistics
ambulance location
mathematical models
linear programming
mathematical models
linear programming
optimization models
title_short Vehicle location models for Emergency Medical Services. An application for a Colombian company
title_full Vehicle location models for Emergency Medical Services. An application for a Colombian company
title_fullStr Vehicle location models for Emergency Medical Services. An application for a Colombian company
title_full_unstemmed Vehicle location models for Emergency Medical Services. An application for a Colombian company
title_sort Vehicle location models for Emergency Medical Services. An application for a Colombian company
dc.creator.fl_str_mv Zapata Murillo, Pablo
Baldoquin de la Peña, Maria Gulnara
dc.contributor.author.spa.fl_str_mv Zapata Murillo, Pablo
Baldoquin de la Peña, Maria Gulnara
dc.subject.spa.fl_str_mv Emergency Medical Services
hospital logistics
ambulance location
mathematical models
linear programming
mathematical models
linear programming
optimization models
topic Emergency Medical Services
hospital logistics
ambulance location
mathematical models
linear programming
mathematical models
linear programming
optimization models
description Ambulance location, in a certain area of coverage, is a key element in reducing the waiting time of a potential patient and the initiation a healthcare service in Emergency Medical Services (EMS). The Operations Research area, developing and solving adequate mathematical models, helps to make good decisions in EMS. We propose two variants of a Mixed Integer Linear Programming model for locating heterogeneous fleet vehicles to support different types of services in emergency medical care, taking into account the operational requirements of a health care service company in Colombia. The proposed models do not exactly match any of those found in the literature. The models are solved with Gurobi solver and the modeling language AMPL and they are successfully validated with historical data of the company under study and some estimates based on external sources. These obtained results are compared using an adaptation of the concept of Preparedness taken from the literature for ambulance positioning, as regard to measure the readiness of the system to the expected demand. The new results show that the relevance of each model depends of the prioritization of services and/or areas that the company considers.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-04-30 00:00:00
2022-06-17T20:19:47Z
dc.date.available.none.fl_str_mv 2018-04-30 00:00:00
2022-06-17T20:19:47Z
dc.date.issued.none.fl_str_mv 2018-04-30
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/5032
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v15i29.1211
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v15i29.1211
identifier_str_mv 1794-1237
10.24050/reia.v15i29.1211
2463-0950
url https://repository.eia.edu.co/handle/11190/5032
https://doi.org/10.24050/reia.v15i29.1211
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv ALSALLOUM, O. I. & RAND, G. K. 2006. Extensions to emergency vehicle location models. Computers & Operations Research, 33, 2725-2743.
ANDERSSON, T. & VÄRBRAND, P. 2007. Decision support tools for ambulance dispatch and relocation. Journal of the Operational Research Society, 58, 195-201.
BÉLANGER, V., RUIZ, A. & SORIANO, P. 2015. Recent advances in emergency medical services management, Tech. Rep. CIRRELT-2015-28, CIRRELT.
BERALDI, P., BRUNI, M. E. & CONFORTI, D. 2004. Designing robust emergency medical service via stochastic programming. European Journal of Operational Research, 158, 183-193.
BROTCORNE, L., LAPORTE, G. & SEMET, F. 2003. Ambulance location and relocation models. European journal of operational research, 147, 451-463.
CÉSPEDES, S., VELASCO, N. & AMAYA, C. 2009. Localización y relocalización de ambulancias del centro regulador de urgencias y emergencias de Bogotá.
CHURCH, R. & REVELLE, C. The maximal covering location problem. Papers of the Regional Science Association, 1974. Springer, 101-118.
DASKIN, M. S. 1983. A maximum expected covering location model: formulation, properties and heuristic solution. Transportation science, 17, 48-70.
DASKIN, M. S. 1984. Location, dispatching and routing models for emergency services with stochastic travel times.
DASKIN, M. S. & STERN, E. H. 1981. A hierarchical objective set covering model for emergency medical service vehicle deployment. Transportation Science, 15, 137-152.
GENDREAU, M., LAPORTE, G. & SEMET, F. 1997. Solving an ambulance location model by tabu search. Location science, 5, 75-88.
GOLDBERG, J., DIETRICH, R., CHEN, J. M., MITWASI, M. G., VALENZUELA, T. & CRISS, E. 1990. Validating and applying a model for locating emergency medical vehicles in Tuczon, AZ. European Journal of Operational Research, 49, 308-324.
GOLDBERG, J. B. 2004. Operations research models for the deployment of emergency services vehicles. EMS management Journal, 1, 20-39.
GRODZEVICH, O. & ROMANKO, O. 2006. Normalization and other topics in multi-objective optimization.
HOGAN, K. & REVELLE, C. 1986. Concepts and applications of backup coverage. Management science, 32, 1434-1444.
MANDELL, M. B. 1998. Covering models for two-tiered emergency medical services systems. Location Science, 6, 355-368.
ORTEGA, A. E. R., POMAR, L. A. & PEÑA, J. P. 2007. Diseño metodológico para la ubicación de ambulancias del sector de atención prehospitalaria en bogotá dc 1. Revista Ingeniería Industrial, 6.
REVELLE, C. & MARIANOV, V. 1991. A probabilistic FLEET model with individual vehicle reliability requirements. European Journal of Operational Research, 53, 93-105.
SAATY, T. L. 2008. Decision making with the analytic hierarchy process. International journal of services sciences, 1, 83-98.
SCHILLING, D., ELZINGA, D. J., COHON, J., CHURCH, R. & REVELLE, C. 1979. The TEAM/FLEET models for simultaneous facility and equipment siting. Transportation Science, 13, 163-175.
SCHMID, V. & DOERNER, K. F. 2010. Ambulance location and relocation problems with time-dependent travel times. European journal of operational research, 207, 1293-1303.
SINGER, M. & DONOSO, P. 2008. Assessing an ambulance service with queuing theory. Computers & operations research, 35, 2549-2560.
SU, Q., LUO, Q. & HUANG, S. H. 2015. Cost-effective analyses for emergency medical services deployment: A case study in Shanghai. International Journal of Production Economics, 163, 112-123.
TOREGAS, C., SWAIN, R., REVELLE, C. & BERGMAN, L. 1971. The location of emergency service facilities. Operations Research, 19, 1363-1373.
TORO-DÍAZ, H., MAYORGA, M. E., CHANTA, S. & MCLAY, L. A. 2013. Joint location and dispatching decisions for emergency medical services. Computers & Industrial Engineering, 64, 917-928.
VILLEGAS, J. G., CASTAÑEDA, C. & BLANDÓN, K. A. 2012. Mejoramiento de la localización de ambulancias de atención prehospitalaria en medellín (colombia) con modelos de optimización. CLAIO/SBPO2012, 123, 12.
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1211/1174
dc.relation.citationedition.spa.fl_str_mv Núm. 29 , Año 2018
dc.relation.citationendpage.none.fl_str_mv 46
dc.relation.citationissue.spa.fl_str_mv 29
dc.relation.citationstartpage.none.fl_str_mv 31
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv Revista EIA - 2018
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2018
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1211
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/6de7d185-a883-43eb-b837-b199c960ae07/download
bitstream.checksum.fl_str_mv 2112f8d1e59da317b6fcf8580fc96bcd
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814100922709573632
spelling Zapata Murillo, Pablof55c2cca98506b708afe8bd10f18be2a300Baldoquin de la Peña, Maria Gulnara98dc595f9c9d4f065b75c3bc52b7efb63002018-04-30 00:00:002022-06-17T20:19:47Z2018-04-30 00:00:002022-06-17T20:19:47Z2018-04-301794-1237https://repository.eia.edu.co/handle/11190/503210.24050/reia.v15i29.12112463-0950https://doi.org/10.24050/reia.v15i29.1211Ambulance location, in a certain area of coverage, is a key element in reducing the waiting time of a potential patient and the initiation a healthcare service in Emergency Medical Services (EMS). The Operations Research area, developing and solving adequate mathematical models, helps to make good decisions in EMS. We propose two variants of a Mixed Integer Linear Programming model for locating heterogeneous fleet vehicles to support different types of services in emergency medical care, taking into account the operational requirements of a health care service company in Colombia. The proposed models do not exactly match any of those found in the literature. The models are solved with Gurobi solver and the modeling language AMPL and they are successfully validated with historical data of the company under study and some estimates based on external sources. These obtained results are compared using an adaptation of the concept of Preparedness taken from the literature for ambulance positioning, as regard to measure the readiness of the system to the expected demand. The new results show that the relevance of each model depends of the prioritization of services and/or areas that the company considers.Ambulance location, in a certain area of coverage, is a key element in reducing the waiting time of a potential patient and the initiation a healthcare service in Emergency Medical Services (EMS). The Operations Research area, developing and solving adequate mathematical models, helps to make good decisions in EMS. We propose two variants of a Mixed Integer Linear Programming model for locating heterogeneous fleet vehicles to support different types of services in emergency medical care, taking into account the operational requirements of a health care service company in Colombia. The proposed models do not exactly match any of those found in the literature. The models are solved with Gurobi solver and the modeling language AMPL and they are successfully validated with historical data of the company under study and some estimates based on external sources. These obtained results are compared using an adaptation of the concept of Preparedness taken from the literature for ambulance positioning, as regard to measure the readiness of the system to the expected demand. The new results show that the relevance of each model depends of the prioritization of services and/or areas that the company considers.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2018https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1211Emergency Medical Serviceshospital logisticsambulance locationmathematical modelslinear programmingmathematical modelslinear programmingoptimization modelsVehicle location models for Emergency Medical Services. An application for a Colombian companyVehicle location models for Emergency Medical Services. An application for a Colombian companyArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85ALSALLOUM, O. I. & RAND, G. K. 2006. Extensions to emergency vehicle location models. Computers & Operations Research, 33, 2725-2743.ANDERSSON, T. & VÄRBRAND, P. 2007. Decision support tools for ambulance dispatch and relocation. Journal of the Operational Research Society, 58, 195-201.BÉLANGER, V., RUIZ, A. & SORIANO, P. 2015. Recent advances in emergency medical services management, Tech. Rep. CIRRELT-2015-28, CIRRELT.BERALDI, P., BRUNI, M. E. & CONFORTI, D. 2004. Designing robust emergency medical service via stochastic programming. European Journal of Operational Research, 158, 183-193.BROTCORNE, L., LAPORTE, G. & SEMET, F. 2003. Ambulance location and relocation models. European journal of operational research, 147, 451-463.CÉSPEDES, S., VELASCO, N. & AMAYA, C. 2009. Localización y relocalización de ambulancias del centro regulador de urgencias y emergencias de Bogotá.CHURCH, R. & REVELLE, C. The maximal covering location problem. Papers of the Regional Science Association, 1974. Springer, 101-118.DASKIN, M. S. 1983. A maximum expected covering location model: formulation, properties and heuristic solution. Transportation science, 17, 48-70.DASKIN, M. S. 1984. Location, dispatching and routing models for emergency services with stochastic travel times.DASKIN, M. S. & STERN, E. H. 1981. A hierarchical objective set covering model for emergency medical service vehicle deployment. Transportation Science, 15, 137-152.GENDREAU, M., LAPORTE, G. & SEMET, F. 1997. Solving an ambulance location model by tabu search. Location science, 5, 75-88.GOLDBERG, J., DIETRICH, R., CHEN, J. M., MITWASI, M. G., VALENZUELA, T. & CRISS, E. 1990. Validating and applying a model for locating emergency medical vehicles in Tuczon, AZ. European Journal of Operational Research, 49, 308-324.GOLDBERG, J. B. 2004. Operations research models for the deployment of emergency services vehicles. EMS management Journal, 1, 20-39.GRODZEVICH, O. & ROMANKO, O. 2006. Normalization and other topics in multi-objective optimization.HOGAN, K. & REVELLE, C. 1986. Concepts and applications of backup coverage. Management science, 32, 1434-1444.MANDELL, M. B. 1998. Covering models for two-tiered emergency medical services systems. Location Science, 6, 355-368.ORTEGA, A. E. R., POMAR, L. A. & PEÑA, J. P. 2007. Diseño metodológico para la ubicación de ambulancias del sector de atención prehospitalaria en bogotá dc 1. Revista Ingeniería Industrial, 6.REVELLE, C. & MARIANOV, V. 1991. A probabilistic FLEET model with individual vehicle reliability requirements. European Journal of Operational Research, 53, 93-105.SAATY, T. L. 2008. Decision making with the analytic hierarchy process. International journal of services sciences, 1, 83-98.SCHILLING, D., ELZINGA, D. J., COHON, J., CHURCH, R. & REVELLE, C. 1979. The TEAM/FLEET models for simultaneous facility and equipment siting. Transportation Science, 13, 163-175.SCHMID, V. & DOERNER, K. F. 2010. Ambulance location and relocation problems with time-dependent travel times. European journal of operational research, 207, 1293-1303.SINGER, M. & DONOSO, P. 2008. Assessing an ambulance service with queuing theory. Computers & operations research, 35, 2549-2560.SU, Q., LUO, Q. & HUANG, S. H. 2015. Cost-effective analyses for emergency medical services deployment: A case study in Shanghai. International Journal of Production Economics, 163, 112-123.TOREGAS, C., SWAIN, R., REVELLE, C. & BERGMAN, L. 1971. The location of emergency service facilities. Operations Research, 19, 1363-1373.TORO-DÍAZ, H., MAYORGA, M. E., CHANTA, S. & MCLAY, L. A. 2013. Joint location and dispatching decisions for emergency medical services. Computers & Industrial Engineering, 64, 917-928.VILLEGAS, J. G., CASTAÑEDA, C. & BLANDÓN, K. A. 2012. Mejoramiento de la localización de ambulancias de atención prehospitalaria en medellín (colombia) con modelos de optimización. CLAIO/SBPO2012, 123, 12.https://revistas.eia.edu.co/index.php/reveia/article/download/1211/1174Núm. 29 , Año 201846293115Revista EIAPublicationOREORE.xmltext/xml2615https://repository.eia.edu.co/bitstreams/6de7d185-a883-43eb-b837-b199c960ae07/download2112f8d1e59da317b6fcf8580fc96bcdMD5111190/5032oai:repository.eia.edu.co:11190/50322023-07-25 17:22:39.492https://creativecommons.org/licenses/by-nc-sa/4.0/Revista EIA - 2018metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com